Skip to main content

Advertisement

Log in

Behavioral effects of aminoadamantane class NMDA receptor antagonists on schedule-induced alcohol and self-administration of water in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Aminoadamantanes represent a class of NMDA glutamate receptor antagonists that reduce alcohol consumption and may prevent alcohol-induced neuronal adaptations and side effects.

Objective

Behavioral specificity of memantine and amantadine on alcohol drinking in a schedule-induced polydipsia (SIP) task was investigated in mice.

Methods

Male C57BL/6J mice were food-deprived and divided into four groups: 5% alcohol SIP, water SIP, 1 h limited access regulatory water drinking, and a control group to determine if either drug altered ethanol drinking. Behavioral specificity of memantine (5, 10, and 25 mg/kg, ip) and amantadine (20, 40, and 60 mg/kg, ip) was determined by comparing alterations in alcohol or water consumption in SIP and regulatory water drinking. Drug effects on SIP drinking-specific measures (grams per kilogram consumption) were also compared to nondrinking measures (locomotion, head-entries for food, and lick efficiency).

Results

Compared to saline, memantine reduced alcohol SIP drinking (10 and 25 mg/kg). Memantine increased locomotion during alcohol SIP (25 mg/kg) and during water SIP (5 and 25 mg/kg). In contrast, amantadine reduced both alcohol SIP (40 mg/kg) and water SIP (40 and 60 mg/kg). Both drugs reduced regulatory water consumption over the entire dose range tested. Blood alcohol concentrations indicated consumption of physiologically meaningful amounts of alcohol during SIP, and that changes in alcohol metabolism did not account for drug-induced reductions in alcohol drinking.

Conclusions

In addition to reducing alcohol drinking, both drugs had other behavioral effects that included reductions in regulatory drinking. These results suggest that the therapeutic utility of these drugs for ameliorating human alcohol addiction remains questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alkana RL, Parker ES, Malcolm RD, Cohen HB, Birch H, Noble EP (1982) Interaction of apomorphine and amantadine with alcohol in men. Alcohol Clin Exp Res 6:403–411

    Article  PubMed  CAS  Google Scholar 

  • Bisaga A, Evans SM (2003) Acute effects of memantine in combination with alcohol in moderate drinkers. Psychopharmacology 172:16–24

    Article  PubMed  CAS  Google Scholar 

  • Bormann J (1989) Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur J Pharmacol 166:591–592

    Article  PubMed  CAS  Google Scholar 

  • Boyce-Rustay J, Risinger FO (2003) Dopamine D3 receptor knockout mice and the motivational effects of alcohol. Pharmacol Biochem Behav 75:373–379

    Article  PubMed  CAS  Google Scholar 

  • Braun AR, Laruelle M, Mouradian MM (1997) Interactions between D1 and D2 dopamine receptor family agonists and antagonists: the effects of chronic exposure on behavior and receptor binding in rats and their clinical implications. J Neural Transm 104:341–362

    Article  PubMed  CAS  Google Scholar 

  • Brett LP, Levine S (1979) Schedule-induced polydipsia suppresses pituitary-adrenal activity in rat. J Comp Physiol Psychol 93:946–956

    Article  PubMed  CAS  Google Scholar 

  • Brett LP, Levine S (1981) The pituitary-adrenal response to “minimized” schedule-induced drinking. Physiol Behav 26:152–158

    Article  Google Scholar 

  • Bubser M, Keseberg U, Notz PK, Schmidt WJ (1992) Differential behavioural and neurochemical effects of competitive and non-competitive NMDA receptor antagonists in rats. Eur J Pharmacol 229:75–82

    Article  PubMed  CAS  Google Scholar 

  • Camarini R, Hodge CW (2004) Ethanol preexposure increases ethanol self-administration in C57BL/6J and DBA/2J mice. Pharmacol Biochem Behav 79:623–632

    Article  PubMed  CAS  Google Scholar 

  • Camarini R, Mehmert KK, Hodge CW (2000) Effects of alcohol pre-exposure on alcohol self-administration in DBA/2J and C57BL/6 mice. Alcohol Clin Exp Res Suppl 24:16A

    Google Scholar 

  • Clement HW, Grote C, Svensson L, Engel J, Zofel P, Wesemann W (1995) In vivo studies on the effects of memantine on dopamine metabolism in the striatum and n. accumbens of the rat. J Neural Transm Suppl 46:107–115

    PubMed  CAS  Google Scholar 

  • Crabbe JC, Belknap JK, Buck KJ (1994) Genetic animal models of alcohol and drug abuse. Science 264:1715–1723

    Article  PubMed  CAS  Google Scholar 

  • Crum RM, Muntaner C, Eaton WW, Anthony JC (1995) Occupational stress and the risk of alcohol abuse and dependence. Alcohol Clin Ex Res 19:647–655

    Article  CAS  Google Scholar 

  • Dahchour A, De Witte P (2000) Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate. Prog Neurobiol 60:343–362

    Article  PubMed  CAS  Google Scholar 

  • Dahchour A, DeWitte P, Bolo N, Nedelec J-F, Muzet M, Durbin P, Macher JP (1998) Central effects of acamprosate: part 1. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in alcohol withdrawn rats. Psychiatry Res 82:107–114

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Thavundayil J, Gianoulakis C (2002) Response of the hypothalamic-pituitary-adrenal axis to stress in the absence and presence of ethanol in subjects at high and low risk of alcoholism. Neuropsychopharmacology 27:442–452

    Article  PubMed  CAS  Google Scholar 

  • Dantzer R, Terlouw C, Mormede P, Le Moal M (1988) Schedule-induced polydipsia experience decreases plasma corticosterone levels but increases plasma prolactin levels. Physiol Behav 43:275–279

    Article  PubMed  CAS  Google Scholar 

  • Danysz W, Essmann U, Bresink I, Wilke R (1994) Glutamate antagonists have different effects on spontaneous locomotor activity in rats. Pharmacol Biochem Behav 48:111–118

    Article  PubMed  CAS  Google Scholar 

  • Danysz W, Parsons CG, Kornhuber J, Schmidt W, Quack G (1997) Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents—preclinical studies. Neurosci Biobehav Rev 21:455–468

    Article  PubMed  CAS  Google Scholar 

  • De Leonibus E, Mele A, Oliverio A, Pert A (2001) Locomotor activity induced by the non-competitive N-methyl-D-aspartate antagonist, MK-801: role of nucleus accumbens efferent pathways. Neuroscience 104:105–116

    Article  PubMed  Google Scholar 

  • Falk JL (1961) Production of polydipsia in normal rats by an intermittent food schedule. Science 133:195–196

    Article  PubMed  CAS  Google Scholar 

  • Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6:577–588

    Article  PubMed  CAS  Google Scholar 

  • Fisher A, Biggs CS, Starr MS (1998) Differential effects of NMDA and non-NMDA antagonists on the activity of aromatic L-amino acid decarboxylase activity in the nigrostriatal dopamine pathway of the rat. Brain Res 792:126–132

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Nestler EJ (1995) Molecular and cellular adaptations in signal transduction pathways following ethanol exposure. Clin Neurosci 3:165–173

    PubMed  CAS  Google Scholar 

  • Geldenhuys WJ, Malan SF, Bloomquist JR, Marchand AP, Van der Schyf CJ (2005) Pharmacology and structure-activity relationships of bioactive polycyclic cage compounds: a focus on pentacycloundecane derivatives. Med Res Rev 25:21–48

    Article  PubMed  CAS  Google Scholar 

  • Hayden FG, Minocha A, Spyker DA, Hoffman HE (1985) Comparative single-dose pharmacokinetics of amantadine hydrochloride and rimantadine hydrochloride in young and elderly adults. Antimicrob Agents Chemother 28:216–221

    PubMed  CAS  Google Scholar 

  • Hernandez-Avila CA, Oncken C, Van Kirk J, Wand G, Kranzler HR (2002) Adrenocorticotropin and cortisol responses to a naloxone challenge and risk of alcoholism. Biol Psychiatry 51:652–658

    Article  PubMed  CAS  Google Scholar 

  • Hesselink HB, De-Boer AG, Breimer DD, Danysz W (1999) Dopamine release in the prefrontal cortex in response to memantine following sub-chronic NMDA receptor blockade with memantine: a microdialysis study in rats. J Neural Transm 106:803–818

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HE, Gaylord JC, Blasecki JW, Shalaby LM, Whitney CC (1988) Pharmacokinetics and metabolism of rimantadine hydrochloride in mice and dogs. Antimicrob Agents Chemother 32:1699–1704

    PubMed  CAS  Google Scholar 

  • Holter SM, Danysz W, Spanagel R (1996) Evidence for alcohol anti-craving properties of memantine. Eur J Pharmacol 314:R1–2

    Article  PubMed  CAS  Google Scholar 

  • Huber TJ, Dietrich DE, Emrich HM (1999) Possible use of amandine in depression. Pharmacopsychiatry 32:47–55

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M (1997) Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 41:135–144

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Hubers M, Rusche K, Riederer P (1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor gated ion channel: a human postmortem brain study. Eur J Pharmacol 206:297–300

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M, Schoppmeyer K, Riederer P (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 43:91–104

    PubMed  CAS  Google Scholar 

  • Kotlinska J (2001) NMDA antagonists inhibit the development of alcohol dependence in rats. Pol J Pharmacol 53:47–50

    PubMed  CAS  Google Scholar 

  • Kushner MG, Sher KJ, Beitman BD (1990) The relation between alcohol problems and the anxiety disorders. Am J Psychiatry 147:685–695

    PubMed  CAS  Google Scholar 

  • Langenbucher J, Chung T, Morgenstern J, Labouvie E, Nathan PE, Bavly L (1997) Physiological alcohol dependence as a “specifier” of risk for medical problems and relapse liability in DSM-IV. J Stud Alcohol 58:341–350

    PubMed  CAS  Google Scholar 

  • Le A, Poulos CX, Quan B, Chow S (1993) The effects of selective blockade of delta and mu opiate receptors on alcohol consumption by C57BL/6 mice in a restricted access paradigm. Brain Res 630:330–332

    Article  PubMed  CAS  Google Scholar 

  • Levine R, Levine S (1989) Role of the pituitary-adrenal hormones in the acquisition of schedule-induced polydipsia. Behav Neurosci 103:621–37

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (2004) Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 6:S61–S74

    PubMed  CAS  Google Scholar 

  • Littleton J (1995) Acamprosate in alcohol dependence: how does it work? Addiction 90:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi H, Swanson KL, Albuquerque EX (1997) Amantadine inhibits nicotinic acetylcholine receptor function in hippocampal neurons. J Pharmacol Exp Ther 281:834–844

    PubMed  CAS  Google Scholar 

  • Mele A, Wozniak KM, Hall FS, Pert A (1998) The role of striatal dopaminergic mechanisms in rotational behavior induced by phencyclidine and phencyclidine-like drugs. Psychopharmacology 135:107–118

    Article  PubMed  CAS  Google Scholar 

  • Menon MK, Vivonia CA, Haddox VG (1984) Evidence for presynaptic antagonism by amantadine of indirectly acting central stimulants. Psychopharmacology 82:89–92

    Article  PubMed  CAS  Google Scholar 

  • Messiha FS (1977) Modification of the central depressant action of alcohol by amantadine hydrochloride in the mouse. Proc West Pharmacol Soc 20:333–337

    PubMed  CAS  Google Scholar 

  • Messiha FS (1978) Antagonism of alcohol-evoked responses by amantadine: a possible clinical application. Pharmacol Biochem Behav 8:573–577

    Article  PubMed  CAS  Google Scholar 

  • Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, Fuksa L, Martinkova J (2004) Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Pharmacol 60:583–589

    Article  CAS  Google Scholar 

  • Mirovsky Y, Yu YL, Wagner GC, Sekowski A, Goldberg M, Fisher H (1995) Novel synergistic treatment of ethanol withdrawal seizures in rats with dopamine and serotonin agonists. Alcohol Clin Exp Res 19:160–163

    Article  PubMed  CAS  Google Scholar 

  • Mittleman G, Rosner AL, Schaub CL (1994) Polydipsia and dopamine: behavioral effects of dopamine D1 and D2 receptor agonists and antagonists. J Pharmacol Exp Ther 271:638–650

    PubMed  CAS  Google Scholar 

  • Mittleman G, Van Brunt CL, Matthews DB (2003) Schedule-induced alcohol self-administration in DBA/2J and C57BL/6J mice. Alcohol Clin Exp Res 27:918–925

    PubMed  Google Scholar 

  • Mizoguchi K, Yokoo H, Yoshida M, Tanaka T, Tanaka M (1994) Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-D-aspartate antagonism. Brain Res 662:255–258

    Article  PubMed  CAS  Google Scholar 

  • Muller WE, Mutschler E, Riederer P (1995) Noncompetitive NMDA receptor antagonists with fast open-channel blocking kinetics and strong voltage-dependency as potential therapeutic agents for Alzheimer’s dementia. Pharmacopsychiatry 28:113–124

    Article  PubMed  CAS  Google Scholar 

  • Nuotto E, Mattila MJ (1984) Failure of amantadine and bromocriptine to counteract alcoholic inebriation in man. Acta Pharm Toxicol 55:168–173

    CAS  Google Scholar 

  • Page G, Peeters M, Maloteaux JM, Hermans E (2000) Increased dopamine uptake in striatal synaptosomes after treatment of rats with amantadine. Eur J Pharmacol 403:75–80

    Article  PubMed  CAS  Google Scholar 

  • Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34:1239–1258

    Article  PubMed  CAS  Google Scholar 

  • Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38:735–767

    Article  PubMed  CAS  Google Scholar 

  • Peeters M, Page G, Maloteaux JM, Hermans E (2002) Hypersensitivity of dopamine transmission in the rat striatum after treatment with the NMDA receptor antagonist amantadine. Brain Res 949:32–41

    Article  PubMed  CAS  Google Scholar 

  • Peeters M, Maloteaux J-M, Hermans E (2003) Distinct effects of amantadine and memantine on dopaminergic transmission in the rat striatum. Neurosci Lett 343:205–209

    Article  PubMed  CAS  Google Scholar 

  • Periclou A, Ventura D, Rao N, Abromowitz W (2006) Pharmacokinetic study of memantine in healthy and renally impaired subjects. Clin Pharmacol Ther 79:134–143

    Article  PubMed  CAS  Google Scholar 

  • Piasecki J, Koros E, Dyr W, Kostowski W, Danysz W, Bienkowski P (1998) Alcohol-reinforced behavior in rats: effects of uncompetitive NMDA receptor antagonist, memantine. Eur J Pharmacol 354:135–143

    Article  PubMed  CAS  Google Scholar 

  • Pohorecky LA (1981) The interaction of alcohol and stress. A review. Neurosci Biobehav Rev 5:209–229

    Article  PubMed  CAS  Google Scholar 

  • Quack G, Hesselink M, Danysz H, Spanagel R (1995) Microdialysis studies with amantadine and memantine on pharmacokinetics and effects on dopamine turnover. J Neural Transm Suppl 46:97–105

    PubMed  CAS  Google Scholar 

  • Risinger FO, Brown MM, Doan AM, Oakes RA (1998) Mouse strain differences in oral operant ethanol reinforcement under continuous access conditions. Alcohol Clin Exp Res 22:677–684

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA (1993) Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci 14:325–331

    Article  PubMed  CAS  Google Scholar 

  • Roper TJ, Nieto J (1979) Schedule-induced drinking and other behavior in the rat, as a function of body weight deficit. Physiol Behav 23:673–678

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WJ, Kretschmer BD (1997) Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev 21:381–392

    Article  PubMed  CAS  Google Scholar 

  • Shearman E, Rossi S, Szasz B, Juranyi Z, Fallon S, Pomara N, Sershen H, Lajtha A (2006) Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations: a microdialysis study. Brain Res Bull 69:204–213

    Article  PubMed  CAS  Google Scholar 

  • Shelton KL, Balster RL (1997) Effects of γ-aminobutyric acid agonists and N-Methyl-D-aspartate antagonists on a multiple schedule of alcohol and saccharin self-administration in rats. J Pharmacol Exp Ther 280:1250–1260

    PubMed  CAS  Google Scholar 

  • Smothers CT, Mrotek JJ, Lovinger DM (1997) Chronic ethanol exposure leads to a selective enhancement of N-methyl-D-aspartate receptor function in cultured hippocampal neurons. J Pharmacol Exp Ther 283:1214–1222

    PubMed  CAS  Google Scholar 

  • Spanagel R, Zieglgansberger W (1997) Anti-craving compounds for alcohol: new pharmacological tools to study addictive processes. Trends Pharmacol Sci 18:54–59

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Eilbacher B, Wilke R (1994) Memantine-induced dopamine release in the prefrontal cortex and striatum of the rat—a pharmacokinetic microdialysis study. Eur J Pharmacol 262:21–26

    Article  PubMed  CAS  Google Scholar 

  • Starr MS, Starr BS (1995) Locomotor effects of amantadine in the mouse are not those of a typical glutamate antagonist. J Neural Transm Parkinson’s Dis Dement Sect 9:31–43

    Article  CAS  Google Scholar 

  • Svensson A, Carlsson ML, Carlsson A (1995) Crucial role of the accumbens nucleus in the neurotransmitter interactions regulating motor control in mice. J Neural Transm Gen Sect 101:127–148

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Falk JL (1986) Alcohol polydipsic choice: effects of alternative fluid polydipsic history. Alcohol 3:361–365

    Article  PubMed  CAS  Google Scholar 

  • Tazi A, Dantzer R, Mormede P, LeMoal M (1986) Effects of naloxone, β-endorphin and ACTH on acquisition of schedule-induced polydipsia. Psychopharmacology 85:87–91

    Article  Google Scholar 

  • Wand G, McCaul ME, Gotjen D, Reynolds J, Lee S (2001) Confirmation that offspring from families with alcohol-dependent individuals have greater hypothalamic-pituitary-adrenal axis activation induced by naloxone compared with offspring without a family history of alcohol dependence. Alcohol Clin Exp Res 25:1134–1139

    Article  PubMed  CAS  Google Scholar 

  • Wayner MJ (2002) Craving for alcohol in the rat: adjunctive behavior and the lateral hypothalamus. Pharmacol Biochem Behav 73:27–43

    Article  PubMed  CAS  Google Scholar 

  • Wenk GL, Danysz W, Mobley SL (1995) MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur J Pharmacol 293:267–270

    Article  PubMed  CAS  Google Scholar 

  • Williams SL, Tang M, Falk JL (1992) Prior exposure to a running wheel and scheduled food attenuates polydipsia acquisition. Physiol Behav 52:481–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grant 1 U01AA13506 to GM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Mittleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escher, T., Call, S.B., Blaha, C.D. et al. Behavioral effects of aminoadamantane class NMDA receptor antagonists on schedule-induced alcohol and self-administration of water in mice. Psychopharmacology 187, 424–434 (2006). https://doi.org/10.1007/s00213-006-0465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0465-5

Keywords

Navigation