Skip to main content
Log in

Chronic prevention of μ-opioid receptor (MOR) G-protein coupling in the pontine parabrachial nucleus persistently decreases consumption of standard but not palatable food

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Acute pharmacological studies implicate μ-opioid receptors (MORs) in the parabrachial nucleus (PBN) of the brainstem in modulating eating. The long-term effects of preventing the cellular function of parabrachial MORs on food consumption remain to be elucidated.

Objectives

To determine whether (1) chronic inhibition of MOR-mediated G-protein coupling in the PBN of rats would persistently reduce eating and (2) food properties dictate the effects of MOR blockade.

Materials and methods

We microinfused the irreversible MOR antagonist, β-funaltrexamine (β-FNA) into the lateral PBN and measured the intake of standard and calorically dense palatable chow for 1 week. First, rats were given standard chow for 20 h daily and a calorically dense palatable chow for 4 h during the day. We infused the agonist, [d-Ala2, N-Me-Phe4, Glycinol5]-Enkephalin (DAMGO), 1 week after β-FNA to probe the acute effects of exogenous stimulation of MORs on palatable food intake. [35S]GTPγS autoradiography quantified regional loss of MOR cellular function. Next, we measured the actions of β-FNA on food intake in rats given only standard or palatable chow for 1 week.

Results

One infusion of β-FNA persistently decreased consumption of standard but not palatable chow, regardless of feeding regimen. β-FNA also blocked DAMGO-stimulated palatable chow intake, prevented DAMGO-stimulated G-protein coupling in the central and external lateral subnuclei of the PBN, and decreased coupling in the medial PBN. β-FNA did not affect κ-opioid receptors.

Conclusions

MORs in the lateral PBN serve a physiological role in stimulating consumption of standard food. Properties of the diet, such as high palatability or caloric density, may override the influence of inhibiting MOR function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arjune D, Standifer KM, Pasternak GW, Bodnar RJ (1990) Reduction by central beta-funaltrexamine of food intake in rats under freely-feeding, deprivation and glucoprivic conditions. Brain Res 535:101–109

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson U, Dado RJ, Riedl M, Lee JH, Law PY, Loh HH, Elde R, Wessendorf MW (1995) delta-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci 15:1215–1235

    PubMed  CAS  Google Scholar 

  • Baird JP, Travers SP, Travers JB (2001) Integration of gastric distension and gustatory responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 281:R1581–R1593

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1993) Striatal regulation of morphine-induced hyperphagia: an anatomical mapping study. Psychopharmacology (Berl) 111:207–214

    Article  CAS  Google Scholar 

  • Berthoud HR (2004) Neural control of appetite: cross-talk between homeostatic and non-homeostatic systems. Appetite 43:315–317

    Article  PubMed  Google Scholar 

  • Bodnar RJ, Glass MJ, Ragnauth A, Cooper ML (1995) General, m and k opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res 700:205–212

    Article  PubMed  CAS  Google Scholar 

  • Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E (2005) Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats. Peptides 26:621–629

    Article  PubMed  CAS  Google Scholar 

  • Calcagnetti D, Reid L (1983) Morphine and acceptability of putative reinforcers. Pharmacol Biochem Behav 18:567–569

    Article  PubMed  CAS  Google Scholar 

  • Calingasan NY, Ritter S (1993) Lateral parabrachial subnucleus lesions abolish feeding induced by mercaptoacetate but not by 2-deoxy-D-glucose. Am J Physiol 265:R1168–R1178

    PubMed  CAS  Google Scholar 

  • Cechetto DF, Saper CB (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262:27–45

    Article  PubMed  CAS  Google Scholar 

  • Cole JL, Leventhal L, Pasternak GW, Bowen WD, Bodnar RJ (1995) Reductions in body weight following chronic central opioid receptor subtype antagonists during development of dietary obesity in rats. Brain Res 678:168–176

    Article  PubMed  CAS  Google Scholar 

  • Corwin RL, Hajnal A (2005) Too much of a good thing: neurobiology of non-homeostatic eating and drug abuse. Physiol Behav 86:5–8

    Article  PubMed  CAS  Google Scholar 

  • Evans KR, Vaccarino FJ (1990) Amphetamine- and morphine-induced feeding: evidence for involvement of reward mechanisms. Neurosci Biobehav Rev 14:9–22

    Article  PubMed  CAS  Google Scholar 

  • Fratucci De Gobbi JL, De Luca LA Jr, Johnson AK, Menani JV (2001) Interaction of serotonin and cholecystokinin in the lateral parabrachial nucleus to control sodium intake. Am J Physiol Regul Integr Comp Physiol 280:R1301–R1307

    PubMed  CAS  Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 319:229–259

    PubMed  CAS  Google Scholar 

  • Gosnell BA, Lipton JM (1986) Opioid peptide effects on feeding in rabbits. Peptides 7:745–747

    Article  PubMed  CAS  Google Scholar 

  • Gosnell BA, Majchrzak M (1990) Effects of a selective mu opioid receptor agonist and naloxone on the intake of sodium chloride solutions. Psychopharmacology (Berl) 100:66–71

    Article  CAS  Google Scholar 

  • Guide for the care and use of laboratory animals (2003) National Institutes of Health, Maryland, National Research Council/Public Health Service

  • Halsell CB, Frank ME (1991) Mapping study of the parabrachial taste-responsive area for the anterior tongue in the golden hamster. J Comp Neurol 306:708–722

    Article  PubMed  CAS  Google Scholar 

  • Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    Article  PubMed  CAS  Google Scholar 

  • Hermann GE, Rogers RC (1985) Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat. J Auton Nerv Syst 13:1–17

    Article  PubMed  CAS  Google Scholar 

  • Karimnamazi H, Travers JB (1998) Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res 813:283–302

    Article  PubMed  CAS  Google Scholar 

  • Karimnamazi H, Travers SP, Travers JB (2002) Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 957:193–206

    Article  PubMed  CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1988a) Attenuation of sham feeding by naloxone is stereospecific: evidence for opioid mediation of orosensory reward. Physiol Behav 43:845–847

    Article  PubMed  CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1988b) Naloxone attenuation of sham feeding is modified by manipulation of sucrose concentration. Physiol Behav 44:491–494

    Article  PubMed  CAS  Google Scholar 

  • Koch JE, Glass MJ, Cooper ML, Bodnar RJ (1995) Alterations in deprivation, glucoprivic and sucrose intake following general, mu and kappa opioid antagonists in the hypothalamic paraventricular nucleus of rats. Neuroscience 66:951–957

    Article  PubMed  CAS  Google Scholar 

  • Larson DL, Hua M, Takemori AE, Portoghese PS (1993) Possible contribution of a glutathione conjugate to the long-duration action of beta-funaltrexamine. J Med Chem 36:3669–3673

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Weldon DT, Grace M, Cleary JP, Billington CJ (1995) Naloxone blocks that portion of feeding driven by sweet taste in food-restricted rats. Am J Physiol Regul 268:R248–R252

    CAS  Google Scholar 

  • Liu-Chen LY, Li SX, Lewis ME (1991) Autoradiographic study of irreversible binding of [3H]beta-funaltrexamine to opioid receptors in the rat forebrain: comparison with mu and delta receptor distribution. Brain Res 544:235–242

    Article  PubMed  CAS  Google Scholar 

  • Majeed NH, Przewlocka B, Wedzony K, Przewlocki R (1986) Stimulation of food intake following opioid microinjection into the nucleus accumbens septi in rats. Peptides 7:711–716

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Nie Z, Siggins GR (1997) mu-Opioid receptors modulate NMDA receptor-mediated responses in nucleus accumbens neurons. J Neurosci 17:11–22

    PubMed  CAS  Google Scholar 

  • Moga MM, Herbert H, Hurley KM, Yasui Y, Gray TS, Saper CB (1990a) Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J Comp Neurol 295:624–661

    Article  PubMed  CAS  Google Scholar 

  • Moga MM, Saper CB, Gray TS (1990b) Neuropeptide organization of the hypothalamic projection to the parabrachial nucleus in the rat. J Comp Neurol 295:662–682

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, Iversen SD (1986) Increased food-intake after opioid microinjections into the nucleus accumbens and ventral tegmental area of rat. Brain Res 397:214–224

    Article  PubMed  CAS  Google Scholar 

  • Nicklous DM, Simansky KJ (2003) Neuropeptide FF exerts pro- and anti-opioid actions in the parabrachial nucleus to modulate food intake. Am J Physiol Regul Integr Comp Physiol 285:R1046–R1054

    PubMed  CAS  Google Scholar 

  • Norgren R, Pfaffman C (1975) The pontine taste area in the rat. Brain Res 91:99–117

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Hayama T, Ito S (1987) Response properties of the parabrachio-thalamic taste and mechanoreceptive neurons in rats. Exp Brain Res 68:449–457

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS, Larson DL, Sayre LM, Fries DS, Takemori AE (1980) A novel opioid receptor site directed alkylating agent with irreversible narcotic antagonistic and reversible agonistic activities. J Med Chem 23:233–234

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1995) Central autonomic system, 2nd edn. Academic New York

  • Sim LJ, Selley DE, Childers SR (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[gamma-[35S]thio]-triphosphate binding. Proc Natl Acad Sci USA 92:7242–7246

    Article  PubMed  CAS  Google Scholar 

  • Simansky KJ (2005) NIH symposium series: ingestive mechanisms in obesity, substance abuse and mental disorders. Physiol Behav 86:1–4

    Article  PubMed  CAS  Google Scholar 

  • Stanley BG, Lanthier D, Leibowitz SH (1989) Multiple brain sites sensitive to feeding stimulation by opioid agonist: a cannula-mapping study. Pharmacol Biochem Behav 31:825–832

    Article  Google Scholar 

  • Travers SP, Smith DV (1984) Responsiveness of neurons in the hamster parabrachial nuclei to taste mixtures. J Gen Physiol 84:221–250

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic R, Reilly S (2002) Medial versus lateral parabrachial nucleus lesions in the rat: effects on mercaptoacetate-induced feeding and conditioned taste aversion. Brain Res Bull 58:107–113

    Article  PubMed  CAS  Google Scholar 

  • Ward SJ, Takemori AE (1983) Relative involvement of receptor subtypes in opioid-induced inhibition of gastrointestinal transit in mice. J Pharmacol Exp Ther 224:359–363

    PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, beta-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    PubMed  CAS  Google Scholar 

  • Ward HG, Nicklous DM, Aloyo VJ, Simansky KJ (2006) Mu-opioid receptor cellular function in the nucleus accumbens is essential for hedonically driven eating. Eur J Neurosci 23:1605–1613

    Article  PubMed  Google Scholar 

  • Will MJ, Franzblau EB, Kelley AE (2003) Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci 23:2882–2888

    PubMed  CAS  Google Scholar 

  • Wilson JD, Nicklous DM, Aloyo VJ, Simansky KJ (2003) An orexigenic role for mu-opioid receptors in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 285:R1055–R1065

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Sawa K (2000a) c-Fos-like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 866:135–143

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Sawa K (2000b) Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats. Brain Res 866:144–151

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Kelley AE (1997) Opiate agonists microinjected into the nucleus accumbens enhance sucrose drinking in rats. Psychopharmacology (Berl) 132:350–360

    Article  CAS  Google Scholar 

  • Zhang M, Kelley AE (2002) Intake of saccharin, salt, and ethanol solutions is increased by infusion of a mu opioid agonist into the nucleus accumbens. Psychopharmacology (Berl) 159:415–423

    Article  CAS  Google Scholar 

  • Zhu J, Luo LY, Li JG, Chen C, Liu-Chen LY (1997) Activation of the cloned human kappa opioid receptor by agonists enhances [35S]GTPgammaS binding to membranes: determination of potencies and efficacies of ligands. J Pharmacol Exp Ther 282:676–684

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Vincent Aloyo for his helpful comments about the manuscript and Alicia Spor and Adam Phillips for their technical assistance. This work was supported by USPHS Grant DK067648 from the National Institute of Diabetes and Digestive and Kidney Diseases to KJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny J. Simansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, H.G., Simansky, K.J. Chronic prevention of μ-opioid receptor (MOR) G-protein coupling in the pontine parabrachial nucleus persistently decreases consumption of standard but not palatable food. Psychopharmacology 187, 435–446 (2006). https://doi.org/10.1007/s00213-006-0463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0463-7

Keywords

Navigation