Skip to main content
Log in

Role of 5-HT1A receptors in the modulation of stress-induced lactate metabolism in the medial prefrontal cortex and basolateral amygdala

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Lactate has been shown to play a significant role in energy metabolism and reflect neural activity in the brain.

Objectives

Using in vivo microdialysis technique, we measured extracellular lactate concentrations in the medial prefrontal cortex (mPFC) and the basolateral amygdaloid (BLA) nucleus of rats under electric foot shock stress. Moreover, to examine the role of serotonin (5-HT)1A receptors in brain energy metabolism in response to stressors, we attempted to determine whether the stress-induced changes of extracellular lactate levels in the mPFC and BLA are attenuated by tandospirone, a partial agonist at 5-HT1A receptors, or perospirone, a novel atypical antipsychotic with a 5-HT1A receptor partial agonist and 5-HT2A/dopamine-D2 antagonist property.

Results

Foot shock stress led to an increase in extracellular lactate concentrations both in the mPFC and BLA. Tandospirone (2 mg/kg) attenuated the foot shock stress-induced increase of extracellular lactate concentrations in both of the brain regions, which was blocked by pretreatment with WAY-100635, a selective 5-HT1A antagonist. On the other hand, perospirone (0.3 mg/kg) attenuated the increment of extracellular lactate concentrations in the mPFC and BLA, which was unaltered by pretreatment with WAY-100635.

Conclusions

These results indicate that the foot shock stress-induced increase in lactate metabolism is partly regulated by 5-HT1A receptors both in cortical and limbic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barf T, Korte SM, Korte-Bouws G, Sonesson C, Damsma G, Bohus B, Wikstrom H (1996) Potential anxiolytic properties of R-(+)-8-OSO2CF3-PAT, a 5-HT 1A receptor agonist. Eur J Pharmacol 297:205–211

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Bosker FJ, Klompmakers A, Westenberg HG (1997) Postsynaptic 5-HT1A receptors mediate 5-hydroxytryptamine release in the amygdala through a feedback to the caudal linear raphe. Eur J Pharmacol 333:147–157

    Article  PubMed  CAS  Google Scholar 

  • Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004) The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem 91:189–199

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Samanin R (1987) Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin1A receptor agonist. Eur J Pharmacol 144:223–229

    Article  PubMed  CAS  Google Scholar 

  • Chalmers DT, Watson SJ (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain-a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 561:51–60

    Article  PubMed  CAS  Google Scholar 

  • Cheng LL, Wang SJ, Gean PW (1998) Serotonin depresses excitatory synaptic transmission and depolarization-evoked Ca2+ influx in rat basolateral amygdala via 5-HT1A receptors. Eur J Neurosci 10:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80

    Article  PubMed  Google Scholar 

  • Demestre M, Boutelle M, Fillenz M (1997) Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J Physiol 499(Pt 3):825–832

    PubMed  CAS  Google Scholar 

  • Diaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25:10831–10843

    Article  PubMed  CAS  Google Scholar 

  • Foehring RC (1996) Serotonin modulates N- and P-type calcium currents in neocortical pyramidal neurons via a membrane-delimited pathway. J Neurophysiol 75:648–659

    PubMed  CAS  Google Scholar 

  • Freo U, Pietrini P, Pizzolato G, Furey-Kurkjian M, Merico A, Ruggero S, Dam M, Battistin L (1995) Dose-dependent effects of buspirone on behavior and cerebral glucose metabolism in rats. Brain Res 677:213–220

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG (2002) On serotonin and experimental anxiety. Psychopharmacology (Berl) 163:467–476

    Article  CAS  Google Scholar 

  • Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    Article  PubMed  CAS  Google Scholar 

  • Hajos M, Hajos-Korcsok E, Sharp T (1999) Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br J Pharmacol 126:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Handley SL, McBlane JW (1993) 5HT drugs in animal models of anxiety. Psychopharmacology (Berl) 112:13–20

    Article  CAS  Google Scholar 

  • Hirose A, Kato T, Ohno Y, Shimizu H, Tanaka H, Nakamura M, Katsube J (1990) Pharmacological actions of SM-9018, a new neuroleptic drug with both potent 5-hydroxytryptamine2 and dopamine2 antagonistic actions. Jpn J Pharmacol 53:321–329

    Article  PubMed  CAS  Google Scholar 

  • Hjorth S, Magnusson T (1988) The 5-HT 1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 338:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa M, Terao T, Soya A, Kojima H, Inoue Y, Ueda N, Yoshimura R, Nakamura J (2004) A novel antipsychotic, perospirone, has antiserotonergic and antidopaminergic effects in human brain: findings from neuroendocrine challenge tests. Psychopharmacology (Berl) 176:407–411

    Article  CAS  Google Scholar 

  • Kato T, Hirose A, Ohno Y, Shimizu H, Tanaka H, Nakamura M (1990) Binding profile of SM-9018, a novel antipsychotic candidate. Jpn J Pharmacol 54:478–481

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M (1993) Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci Lett 162:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kuhr WG, Korf J (1988) Extracellular lactic acid as an indicator of brain metabolism: continuous on-line measurement in conscious, freely moving rats with intrastriatal dialysis. J Cereb Blood Flow Metab 8:130–137

    PubMed  CAS  Google Scholar 

  • Mauler F, Fahrig T, Horvath E, Jork R (2001) Inhibition of evoked glutamate release by the neuroprotective 5-HT(1A) receptor agonist BAY x 3702 in vitro and in vivo. Brain Res 888:150–157

    Article  PubMed  CAS  Google Scholar 

  • Meller R, Harrison PJ, Elliott JM, Sharp T (2002) In vitro evidence that 5-hydroxytryptamine increases efflux of glial glutamate via 5-HT(2A) receptor activation. J Neurosci Res 67:399–405

    Article  PubMed  CAS  Google Scholar 

  • New JS (1990) The discovery and development of buspirone: a new approach to the treatment of anxiety. Med Res Rev 10:283–326

    Article  PubMed  CAS  Google Scholar 

  • Ojima T, Ito C, Sakurai E, Watanabe T, Yanai K (2004) Effects of serotonin-dopamine antagonists on prepulse inhibition and neurotransmitter contents in the rat cortex. Neurosci Lett 366:130–134

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Pellerin L (2003) Lactate as a pivotal element in neuron–glia metabolic cooperation. Neurochem Int 43:331–338

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453

    PubMed  CAS  Google Scholar 

  • Schotte A, Bonaventure P, Janssen PF, Leysen JE (1995) In vitro receptor binding and in vivo receptor occupancy in rat and guinea pig brain: risperidone compared with antipsychotics hitherto used. Jpn J Pharmacol 69:399–412

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39

    PubMed  CAS  Google Scholar 

  • Sharp T, McQuade R, Bramwell S, Hjorth S (1993) Effect of acute and repeated administration of 5-HT1A receptor agonists on 5-HT release in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol 348:339–346

    Article  PubMed  CAS  Google Scholar 

  • Shiwa T, Amano T, Matsubayashi H, Seki T, Sasa M, Sakai N (2003) Perospirone, a novel antipsychotic agent, hyperpolarizes rat dorsal raphe neurons via 5-HT1A receptor. J Pharmacol Sci 93:114–117

    Article  PubMed  CAS  Google Scholar 

  • Singewald N, Kouvelas D, Mostafa A, Sinner C, Philippu A (2000) Release of glutamate and GABA in the amygdala of conscious rats by acute stress and baroreceptor activation: differences between SHR and WKY rats. Brain Res 864:138–141

    Article  PubMed  CAS  Google Scholar 

  • Steciuk M, Kram M, Kramer GL, Petty F (2000) Immobilization-induced glutamate efflux in medial prefrontal cortex: blockade by (+)-Mk-801, a selective NMDA receptor antagonist. Stress 3:195–199

    Article  PubMed  CAS  Google Scholar 

  • Takita M, Mikuni M, Takahashi K (1992) Habituation of lactate release responding to stressful stimuli in rat prefrontal cortex in vivo. Am J Physiol 263:R722–R727

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  • Uehara T, Kurata K, Sumiyoshi T, Kurachi M (2003a) Immobilization stress-induced increment of lactate metabolism in the basolateral amygdaloid nucleus is attenuated by diazepam in the rat. Eur J Pharmacol 459:211–215

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Sumiyoshi T, Itoh H, Kurachi M (2003b) Modulation of stress-induced dopamine release by excitotoxic damage of the entorhinal cortex in the rat. Brain Res 989:112–116

    Article  PubMed  CAS  Google Scholar 

  • Uehara T, Sumiyoshi T, Matsuoka T, Tanaka K, Tsunoda M, Itoh H, Kurachi M (2005) Enhancement of lactate metabolism in the basolateral amygdala by physical and psychological stress: role of benzodiazepine receptors. Brain Res 1065:86–91

    Article  PubMed  CAS  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373

    Article  PubMed  CAS  Google Scholar 

  • Yoshino T, Nisijima K, Shioda K, Yui K, Katoh S (2004) Perospirone, a novel atypical antipsychotic drug, potentiates fluoxetine-induced increases in dopamine levels via multireceptor actions in the rat medial prefrontal cortex. Neurosci Lett 364:16–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dainippon Sumitomo Pharmaceuticals (Tokyo, Japan) for the providing the tandospirone and perospirone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Uehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehara, T., Sumiyoshi, T., Matsuoka, T. et al. Role of 5-HT1A receptors in the modulation of stress-induced lactate metabolism in the medial prefrontal cortex and basolateral amygdala. Psychopharmacology 186, 218–225 (2006). https://doi.org/10.1007/s00213-006-0370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0370-y

Keywords

Navigation