Skip to main content
Log in

Effects of dopamine β-hydroxylase genotype and disulfiram inhibition on catecholamine homeostasis in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE), thus playing a critical role in catecholamine metabolism.

Objectives/Methods

We examined the effects of Dbh gene dosage and the DBH inhibitor disulfiram in mice with zero, one, or two null Dbh alleles (+/+, +/−, and −/− mice).

Results

DBH protein levels in adrenal and prefrontal cortex (PFC) and adrenal DBH activity were proportional to number of wild-type alleles. Adrenal DA was slightly increased in +/− mice and markedly increased (80-fold) in −/− mice compared to wild-type animals. While adrenal NE and epinephrine (EPI) were undetectable in −/− mice, adrenal concentrations of NE and EPI were similar in +/+ and +/− mice, suggesting that the increase in DA maintains the normal rate of β-hydroxylation in Dbh +/− mice. Disulfiram had little effect on adrenal catecholamine levels, regardless of genotype or dose. NE was absent in the PFC of −/− mice, but only slightly reduced in +/− animals compared to wild-type animals. PFC DA was increased twofold in +/− mice and fivefold in −/− mice, and the NE to DA ratio was reduced (∼35%) in +/− mice, compared to wild-type mice. Disulfiram significantly decreased PFC NE and increased DA in +/+ and +/− animals, with the disulfiram and genotype effects on the PFC NE to DA ratio apparently additive.

Conclusions

The data reveal potentially important and apparently additive effects of Dbh genotype and disulfiram administration on PFC catecholamine metabolism. These effects may have implications for genetic control of DBH activity in humans and for understanding therapeutic effects of disulfiram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson K, Fuxe K, Agnati LF (1985) Determinations of catecholamine half-lives and turnover rates in discrete catecholamine nerve terminal systems of the hypothalamus, the preoptic region and the forebrain by quantitative histofluorimetry. Acta Physiol Scand 123:411–426

    PubMed  CAS  Google Scholar 

  • Benowitz NL (1993) Clinical pharmacology and toxicology of cocaine. Pharmacol Toxicol 72:3–12

    PubMed  CAS  Google Scholar 

  • Carroll KM, Nich C, Ball SA, McCance E, Rounsavile BJ (1998) Treatment of cocaine and alcohol dependence with psychotherapy and disulfiram. Addiction 93:713–727

    Article  PubMed  CAS  Google Scholar 

  • Carroll KM, Fenton LR, Ball SA, Nich C, Frankforter TL, Shi J, Rounsaville BJ (2004) Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial. Arch Gen Psychiatry 61:264–272

    Article  PubMed  CAS  Google Scholar 

  • Cubells JF, Zabetian CP (2004) Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. Psychopharmacology (Berl.) 174:463–476

    Article  CAS  Google Scholar 

  • Cubells JF, van Kammen DP, Kelley ME, Anderson GM, O'Connor DT, Price LH, Malison R, Rao PA, Kobayashi K, Nagatsu T, Gelernter J (1998) Dopamine beta-hydroxylase: two polymorphisms in linkage disequilibrium at the structural gene DBH associate with biochemical phenotypic variation. Hum Genet 102:533–540

    Article  PubMed  CAS  Google Scholar 

  • Cubells JF, Kranzler HR, McCance-Katz E, Anderson GM, Malison RT, Price LH, Gelernter J (2000) A haplotype at the DBH locus, associated with low plasma dopamine beta-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5:56–63

    Article  PubMed  CAS  Google Scholar 

  • Ewing JA, Mueller RA, Rouse BA, Silver D (1977) Low levels of dopamine beta-hydroxylase and psychosis. Am J Psychiatry 134:927–928

    PubMed  CAS  Google Scholar 

  • Ewing JA, Rouse BA, Mueller RA, Silver D (1978) Can dopamine beta-hydroxylase levels predict adverse reactions to disulfiram? Alcohol Clin Exp Res 2:93–94

    Article  PubMed  CAS  Google Scholar 

  • George TP, Chawarski MC, Pakes J, Carroll KM, Kosten TR, Schottenfeld RS (2000) Disulfiram vs. placebo for cocaine dependence in buprenorphine-maintained subjects: a preliminary trial. Biol Psychiatry 47:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Goldstein M (1966) Inhibition of noradrenaline biosynthesis at the dopamine-beta-hydroxylation stage. Pharmacol Rev 18:77–82

    PubMed  CAS  Google Scholar 

  • Goldstein M, Anagnoste B, Lauber E, McKereghan MR (1964) Inhibition of dopamine β-hydroxylase by disulfiram. Life Sci 3:763–767

    Article  PubMed  CAS  Google Scholar 

  • Haile CN, During MJ, Jatlow PI, Kosten TR, Kosten TA (2003) Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats. Biol Psychiatry 54:915–921

    Article  PubMed  CAS  Google Scholar 

  • Hameedi FA, Rosen MI, McCance-Katz EF, McMahon TJ, Price LH, Jatlow PI, Woods SW, Kosten TR (1995) Behavioral, physiological, and pharmacological interaction of cocaine and disulfiram in humans. Biol Psychiatry 37:560–563

    Article  PubMed  CAS  Google Scholar 

  • Heath RG, Nesselhof W, Bishop MR, Byers M (1965) Behavioral and metabolic changes associated with administration of tetraethylthiuram disulfide (Antabuse). Dis Nerv Syst 26:99–105

    PubMed  CAS  Google Scholar 

  • Hoeldtke RD, Stetson PL (1980) An in vivo tritium release assay of human dopamine beta-hydroxylase. J Clin Endocrinol Metab 51:810–815

    PubMed  CAS  Google Scholar 

  • Johansson B (1992) A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand 369(Suppl):15–26

    Article  CAS  Google Scholar 

  • Jonsson EG, Bah J, Melke J, Abou Jamra R, Schumacher J, Westberg L, Ivo R, Cichon S, Propping P, Nothen MM, Eriksson E, Sedvall GC (2004) Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry 4:4

    Article  PubMed  Google Scholar 

  • Karamanakos PN, Pappas P, Stephanou P, Marselos M (2001) Differentiation of disulfiram effects on central catecholamines and hepatic ethanol metabolism. Pharmacol Toxicol 88:106–110

    Article  PubMed  CAS  Google Scholar 

  • Koster G (1986) Time course of the metabolite patterns of intraventricularly injected [3H]noradrenaline in rat brain regions. J Neurochem 47:1132–1140

    PubMed  CAS  Google Scholar 

  • Major LF, Lerner P, Ballenger JC, Brown GL, Goodwin FK, Lovenberg W (1979) Dopamine-beta-hydroxylase in the cerebrospinal fluid: relationship to disulfiram-induced psychosis. Biol Psychiatry 14:337–344

    PubMed  CAS  Google Scholar 

  • McCance-Katz EF, Kosten TR, Jatlow P (1998a) Disulfiram effects on acute cocaine administration. Drug Alcohol Depend 52:27–39

    Article  PubMed  CAS  Google Scholar 

  • McCance-Katz EF, Kosten TR, Jatlow P (1998b) Chronic disulfiram treatment effects on intranasal cocaine administration: initial results. Biol Psychiatry 43:540–543

    Article  PubMed  CAS  Google Scholar 

  • Musacchio JM, Goldstein M, Anagnoste B, Poch G, Kopin IJ (1966) Inhibition of dopamine-beta-hydroxylase by disulfiram in vivo. J Pharmacol Exp Ther 152:56–61

    PubMed  CAS  Google Scholar 

  • Nagatsu T, Udenfriend S (1972) Photometric assay of dopamine-β-hydroxylase activity in human blood. Clin Chem 18:980–983

    PubMed  CAS  Google Scholar 

  • Petrakis IL, Carroll KM, Nich C, Gordon LT, McCance-Katz EF, Frankforter T, Rounsaville BJ (2000) Disulfiram treatment for cocaine dependence in methadone-maintained opioid addicts. Addiction 95:219–228

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Haile V, Perry SE, Robertson RM, Phillips JA III, Biaggioni I (1991) Dopamine beta-hydroxylase deficiency. A genetic disorder of cardiovascular regulation. Hypertension 18:1–8

    PubMed  CAS  Google Scholar 

  • Scatton B, Dennis T, Curet O (1984) Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways. Brain Res 298:193–196

    Article  PubMed  CAS  Google Scholar 

  • Stewart DJ, Inaba T, Lucassen M, Kalow W (1979) Cocaine metabolism: cocaine and norcocaine hydrolysis by liver and serum esterases. Clin Pharmacol Ther 25:464–468

    PubMed  CAS  Google Scholar 

  • Tassin JP (1998) Norepinephrine-dopamine interactions in the prefrontal cortex and the ventral tegmental area: relevance to mental diseases. Adv Pharmacol 42:712–716

    Article  PubMed  CAS  Google Scholar 

  • Tassin JP, Trovero F, Herve D, Blanc G, Glowinski J (1992) Biochemical and behavioural consequences of interactions between dopaminergic and noradrenergic systems in rat prefrontal cortex. Neurochem Int 20(Suppl):225S–230S

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374:643–646

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA, Marck BT, Palmiter RD, Matsumoto AM (1998) Restoration of norepinephrine and reversal of phenotypes in mice lacking dopamine beta-hydroxylase. J Neurochem 70:2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Trovero F, Marin P, Tassin JP, Premont J, Glowinski J (1994) Accelerated resensitization of the D1 dopamine receptor-mediated response in cultured cortical and striatal neurons from the rat: respective role of alpha 1-adrenergic and N-methyl-D-aspartate receptors. J Neurosci 14:6280–6288

    PubMed  CAS  Google Scholar 

  • Udenfriend S, Wyngaarden JB (1956) Precursors of adrenal epinephrine and norepinephrine in vivo. Biochim Biophys Acta 20:48–52

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend S, Cooper JR, Clark CT, Baer JE (1953) Rate of turnover of epinephrine in the adrenal medulla. Science 117:663–665

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Miller NS, Blizinsky K, Laughlin ML, Palmiter RD (2002) Mice with chronic noradrenaline deficiency resemble amphetamine-sensitized animals. Proc Natl Acad Sci U S A 99:13873–13977

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum RM (1979) Serum dopamine β-hydroxylase. Pharmacol Rev 30:133–166

    Google Scholar 

  • Zabetian CP et al (2001) A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 68:515–522

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Porche' Kirkland for technical assistance, Dr. Betty Eipper and Dr. Steven Ebert for providing DBH antibody, and Sumitomo Pharmaceuticals (Osaka, Japan) for their generous donation of the DOPS required to breed the Dbh −/− mice. Z.R.D. was funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Weinshenker.

Additional information

B.N. Bourdélat-Parks and G.M. Anderson contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourdélat-Parks, B.N., Anderson, G.M., Donaldson, Z.R. et al. Effects of dopamine β-hydroxylase genotype and disulfiram inhibition on catecholamine homeostasis in mice. Psychopharmacology 183, 72–80 (2005). https://doi.org/10.1007/s00213-005-0139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0139-8

Keywords

Navigation