Skip to main content
Log in

Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Formalin-induced pain is reduced in sigma-1 (σ1) receptor knockout mice; therefore, we hypothesized that haloperidol and its metabolites I and II, which have affinity for σ1 receptors, may modulate formalin-induced pain.

Results

Intraplantar administration of formalin (2.5%) to CD-1 mice produced a biphasic period of pain. Haloperidol (0.03–1 mg/kg, s.c.) and reduced haloperidol (metabolite II, 0.25–8 mg/kg, s.c.) dose-dependently inhibited both phases of formalin-induced pain. Haloperidol metabolite I (4–128 mg/kg, s.c.) also produced dose-dependent antinociception in the second phase of the formalin test, but was less potent and effective against first-phase pain. Haloperidol metabolite III (16 and 128 mg/kg) and (−)sulpiride (200 mg/kg), which have no affinity for σ1 receptors, did not produce significant antinociception in either phase of the formalin test. The order of potency of the drugs to produce their antinociceptive effect [haloperidol > metabolite II > metabolite I ≫ metabolite III= (−)sulpiride=inactive] correlated with their affinity for σ1 receptors, but not with their affinity for σ2 or dopamine D2 receptors. Naloxone (1 mg/kg, s.c.) did not antagonize the antinociception induced by haloperidol and its metabolites. None of the antinociceptive drugs in the formalin test produced any antinociception in the tail flick test.

Conclusion

These results suggest that the antinociceptive effect of haloperidol and its metabolites in the formalin test is not due to unspecific/generalised inhibition of nociception or modulation of opioid receptors, and that it may be related, at least partially, to the ability of these drugs to interact with σ1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T (2000) Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97:155–170

    Article  PubMed  CAS  Google Scholar 

  • Bergeron R, Debonnel G (1997) Effects of low and high doses of selective sigma ligands: further evidence suggesting the existence of different subtypes of sigma receptors. Psychopharmacology (Berl) 129:215–224

    Article  CAS  Google Scholar 

  • Bowen WD, Moses EL, Tolentino PJ, Walker JM (1990) Metabolites of haloperidol display preferential activity at σ receptors compared to dopamine D-2 receptors. Eur J Pharmacol 177:111–118

    Article  PubMed  CAS  Google Scholar 

  • Cendan CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM (2005) Formalin-induced pain is reduced in σ1 receptor knockout mice. Eur J Pharmacol 511:73–74

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Malmberg AB, Yaksh TL (1997) Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 280:829–838

    PubMed  CAS  Google Scholar 

  • Chien CC, Pasternak GW (1994) Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 271:1583–1590

    PubMed  CAS  Google Scholar 

  • Chien CC, Pasternak GW (1995) Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett 190:137–139

    Article  PubMed  CAS  Google Scholar 

  • Coderre TJ, Melzack R (1992) The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 12:3665–3670

    PubMed  CAS  Google Scholar 

  • Correa CR, Kyle DJ, Chakraverty S, Calixto JB (1996) Antinociceptive profile of the pseudopeptide B2 bradykinin receptor antagonist NPC 18688 in mice. Br J Pharmacol 117:552–558

    PubMed  CAS  Google Scholar 

  • Coughenour LL, Cordon JJ (1997) Characterization of haloperidol and trifluperidol as subtype-selective N-methyl-d-aspartate (NMDA) receptor antagonists using [3H]TCP and [3H]ifenprodil binding in rat brain membranes. J Pharmacol Exp Ther 280:584–592

    PubMed  CAS  Google Scholar 

  • Couture S, Debonnel G (1998) Modulation of the neuronal response to N-methyl-d-aspartate by selective sigma2 ligands. Synapse 29:62–71

    Article  PubMed  CAS  Google Scholar 

  • Debonnel G, de Montigny C (1996) Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: possible implications for the treatment of psychiatric disorders. Life Sci 58:721–734

    Article  PubMed  CAS  Google Scholar 

  • Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    PubMed  CAS  Google Scholar 

  • Dykstra LA, Woods JH (1986) A tail withdrawal procedure for assessing analgesic activity in rhesus monkeys. J Pharmacol Methods 15:263–269

    Article  PubMed  CAS  Google Scholar 

  • Fasmer OB, Berge OG, Hole K (1985) Changes in nociception after lesions of descending serotonergic pathways induced with 5,6-dihydroxytryptamine. Different effects in the formalin and tail-flick tests. Neuropharmacology 24:729–734

    Article  PubMed  CAS  Google Scholar 

  • Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR, McAllister G (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268:417–426

    PubMed  CAS  Google Scholar 

  • Gronier B, Debonnel G (1999) Involvement of σ receptors in the modulation of the glutamatergic/NMDA neurotransmission in the dopaminergic systems. Eur J Pharmacol 368:183–196

    Article  PubMed  CAS  Google Scholar 

  • Guitart X, Codony X, Monroy X (2004) Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl) 174:301–319

    Article  CAS  Google Scholar 

  • Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  PubMed  CAS  Google Scholar 

  • Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM (1996) Subtype-selective inhibition of N-methyl-d-aspartate receptors by haloperidol. Mol Pharmacol 50:1541–1550

    PubMed  CAS  Google Scholar 

  • Jaen JC, Caprathe BW, Pugsley TA, Wise LD, Akunne H (1993) Evaluation of the effects of the enantiomers of reduced haloperidol, azaperol, and related 4-amino-1-arylbutanols on dopamine and σ receptors. J Med Chem 36:3929–3936

    Article  PubMed  CAS  Google Scholar 

  • Jett MF, McGuirk J, Waligora D, Hunter JC (1997) The effects of mexiletine, desipramine and fluoxetine in rat models involving central sensitization. Pain 69:161–169

    Article  PubMed  CAS  Google Scholar 

  • King M, Pan YX, Mei J, Chang A, Xu J, Pasternak GW (1997) Enhanced κ-opioid receptor-mediated analgesia by antisense targeting the σ1 receptor. Eur J Pharmacol 331:R5–R6

    Article  PubMed  CAS  Google Scholar 

  • Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R (2000) Expression of the purported sigma11) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 20:375–387

    Article  PubMed  CAS  Google Scholar 

  • Kocher L (1988) Systemic naloxone does not affect pain-related behaviour in the formalin test in rat. Physiol Behav 43:265–268

    Article  PubMed  CAS  Google Scholar 

  • Le Bars D, Gozariu M, Cadden SW (2001) Animal models of nociception. Pharmacol Rev 53:597–652

    PubMed  Google Scholar 

  • Magnusson JE, Fisher K (2000) The involvement of dopamine in nociception: the role of D1and D2 receptors in the dorsolateral striatum. Brain Res 855:260–266

    Article  PubMed  CAS  Google Scholar 

  • Marder SR (1998) Antipsychotic medications. In: Schatzberg AF, Nemeroff CH (eds) The American Psychiatric Press textbook of psychopharmacology, 2nd edn. American Psychiatric Press Inc, Washington, pp 309–321

    Google Scholar 

  • Martin M, Matifas A, Maldonado R, Kieffer BL (2003) Acute antinociceptive responses in single and combinatorial opioid receptor knockout mice: distinct mu, delta and kappa tones. Eur J Neurosci 17:701–708

    Article  PubMed  Google Scholar 

  • Matsumoto RR, Pouw B (2000) Correlation between neuroleptic binding to σ1 and σ2 receptors and acute dystonic reactions. Eur J Pharmacol 401:155–160

    Article  PubMed  CAS  Google Scholar 

  • Maurice T, Urani A, Phan VL, Romieu P (2001) The interaction between neuroactive steroids and the σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev 37:116–132

    Article  PubMed  CAS  Google Scholar 

  • Mei J, Pasternak GW (2002) σ1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 300:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Seguin L (1994) Chemically-diverse ligands at the glycine B site coupled to N-methyl-d-aspartate (NMDA) receptors selectively block the late phase of formalin-induced pain in mice. Neurosci Lett 178:139–143

    Article  PubMed  CAS  Google Scholar 

  • Moncada A, Cendan CM, Baeyens JM, Del Pozo E (2003) Effects of serine/threonine protein phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice. Eur J Pharmacol 465:53–60

    Article  PubMed  CAS  Google Scholar 

  • Monnet FP, Blier P, Debonnel G, de Montigny C (1992a) Modulation by sigma ligands of N-methyl-d-aspartate-induced [3H]noradrenaline release in the rat hippocampus: G-protein dependency. Naunyn-Schmiedeberg's Arch Pharmacol 346:32–39

    Article  CAS  Google Scholar 

  • Monnet FP, Debonnel G, de Montigny C (1992b) In vivo electrophysiological evidence for a selective modulation of N-methyl-d-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands. J Pharmacol Exp Ther 261:123–130

    PubMed  CAS  Google Scholar 

  • Monnet FP, Debonnel G, Bergeron R, Gronier B, de Montigny C (1994) The effects of sigma ligands and of neuropeptide Y on N-methyl-d-aspartate-induced neuronal activation of CA3 dorsal hippocampus neurones are differentially affected by pertussin toxin. Br J Pharmacol 112:709–715

    PubMed  CAS  Google Scholar 

  • Monnet FP, Morin-Surun MP, Leger J, Combettes L (2003) Protein kinase C-dependent potentiation of intracellular calcium influx by σ1 receptor agonists in rat hippocampal neurons. J Pharmacol Exp Ther 307:705–712

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ, Franklin KB (1991) Dopamine receptor subtypes and formalin test analgesia. Pharmacol Biochem Behav 40:317–322

    Article  PubMed  CAS  Google Scholar 

  • North MA (1978) Naloxone reversal of morphine analgesia but failure to alter reactivity to pain in the formalin test. Life Sci 22:295–302

    Article  PubMed  CAS  Google Scholar 

  • Ossipov MH, Kovelowski CJ, Wheeler-Aceto H, Cowan A, Hunter JC, Lai J, Malan TP Jr, Porreca F (1996) Opioid antagonists and antisera to endogenous opioids increase the nociceptive response to formalin: demonstration of an opioid kappa and delta inhibitory tone. J Pharmacol Exp Ther 277:784–788

    PubMed  CAS  Google Scholar 

  • Pan YX, Mei J, Xu J, Wan BL, Zuckerman A, Pasternak GW (1998) Cloning and characterization of a mouse σ1 receptor. J Neurochem 70:2279–2285

    Article  PubMed  CAS  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    Article  PubMed  CAS  Google Scholar 

  • Raft D, Toomey T, Gregg JM (1979) Behavior modification and haloperidol in chronic facial pain. South Med J 72:155–159

    PubMed  CAS  Google Scholar 

  • Ryan SM, Watkins LR, Mayer DJ, Maier SF (1985) Spinal pain suppression mechanisms may differ for phasic and tonic pain. Brain Res 334:172–175

    Article  PubMed  CAS  Google Scholar 

  • Seth P, Leibach FH, Ganapathy V (1997) Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 241:535–540

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352

    Article  PubMed  CAS  Google Scholar 

  • Shim SS, Grant ER, Singh S, Gallagher MJ, Lynch DR (1999) Actions of butyrophenones and other antipsychotic agents at NMDA receptors: relationship with clinical effects and structural considerations. Neurochem Int 34:167–175

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama N, Shimoyama M, Davis AM, Inturrisi CE, Elliott KJ (1997) Spinal gabapentin is antinociceptive in the rat formalin test. Neurosci Lett 222:65–67

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Andrieux M, Besancon R, Pilon C, Martres MP, Giros B, Schwartz JC (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 225:331–337

    Article  PubMed  CAS  Google Scholar 

  • Tan PH, Yang LC, Shih HC, Lan KC, Cheng JT (2005) Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther 12:59–66

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino AL, Tasker RA, Melzack R (1988) Systemic administration of naloxone produces analgesia in BALB/c mice in the formalin pain test. Neurosci Lett 84:103–107

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino AL, Tasker RA, Melzack R (1989) Analgesia produced by normal doses of opioid antagonists alone and in combination with morphine. Pain 36:103–109

    Article  PubMed  CAS  Google Scholar 

  • Vissers K, Hoffmann V, Geenen F, Biermans R, Meert T (2003) Is the second phase of the formalin test useful to predict activity in chronic constriction injury models? A pharmacological comparison in different species. Pain Pract 3:298–309

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC (1990) Sigma receptors: biology and function. Pharmacol Rev 42:355–402

    PubMed  CAS  Google Scholar 

  • Wang Y, Su DM, Wang RH, Liu Y, Wang H (2005) Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience 132:49–56

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Wang GD, Kerchner GA, Kim SJ, Xu HM, Chen ZF, Zhuo M (2001) Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 4:164–169

    Article  PubMed  CAS  Google Scholar 

  • Wheeler-Aceto H, Cowan A (1993) Naloxone causes apparent antinociception and pronociception simultaneously in the rat paw formalin test. Eur J Pharmacol 236:193–199

    Article  PubMed  CAS  Google Scholar 

  • Whittemore ER, Ilyin VI, Woodward RM (1997) Antagonism of N-methyl-d-aspartate receptors by σ site ligands: potency, subtype-selectivity and mechanisms of inhibition. J Pharmacol Exp Ther 282:326–338

    PubMed  CAS  Google Scholar 

  • Wu HE, Hung KC, Mizoguchi H, Nagase H, Tseng LF (2002) Roles of endogenous opioid peptides in modulation of nocifensive response to formalin. J Pharmacol Exp Ther 300:647–654

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Yamamoto T, Sagi N, Klenerova V, Goji K, Kawai N, Baba A, Takamori E, Moroji T (1995) Sigma ligands indirectly modulate the NMDA receptor–ion channel complex on intact neuronal cells via σ1 site. J Neurosci 15:731–736

    PubMed  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, Konig M, Palkovits M, Mezey E (1998) Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci U S A 95:2630–2635

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the Junta de Andalucía (CTS 109). We thank K. Shashok for revising the English style of the manuscript and Anke Kröner (visiting scientist from the Faculty of Medical Sciences of Groningen University) for her help in obtaining some of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Baeyens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cendán, C.M., Pujalte, J.M., Portillo-Salido, E. et al. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology 182, 485–493 (2005). https://doi.org/10.1007/s00213-005-0127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0127-z

Keywords

Navigation