Skip to main content

Advertisement

Log in

The potential role of lamotrigine in schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Atypical antipsychotic drugs are the drugs of choice for the treatment of schizophrenia. However, despite advances, no treatments have been established for patients who fail to improve with the most effective of these, clozapine. The inhibition of dopamine transmission through blockade of dopamine D2 receptors is considered to be essential for antipsychotic efficacy, but it is postulated that modulation of glutamate transmission may be equally important. In support of this, symptoms similar to schizophrenia can be induced in healthy volunteers using N-methyl-d-aspartate (NMDA) antagonist drugs that are also known to enhance glutamate transmission. Furthermore, lamotrigine, which can modulate glutamate release, may add to or synergise with atypical antipsychotic drugs, some of which may themselves modulate glutamate transmission.

Objectives

We examine the evidence for the efficacy of lamotrigine. We consider how this fits with a glutamate neuron dysregulation hypothesis of the disorder. We discuss mechanisms by which lamotrigine might influence neuronal activity and glutamate transmission, and possible ways in which the drug might interact with antipsychotic medications.

Results

Data from four clinical studies support the efficacy of adjunctive lamotrigine in the treatment of schizophrenia. In addition, and consistent with a glutamate neuron dysregulation hypothesis of schizophrenia, lamotrigine can prevent the psychotic symptoms or behavioural disruption induced by NMDA receptor antagonists in healthy volunteers or rodents.

Conclusions

The efficacy of lamotrigine is most likely explained within the framework of a glutamate neuron dysregulation hypothesis, and may arise primarily through the drugs ability to influence glutamate transmission and neural activity in the cortex. The drug is likely to act through inhibition of voltage-gated sodium channels, though other molecular interactions cannot be ruled out. Lamotrigine may add to or synergise with some atypical antipsychotic drugs acting on glutamate transmission; alternatively, they may act independently on glutamate and dopamine systems to bring about a combined therapeutic effect. We propose new strategies for the treatment of schizophrenia using a combination of anti-dopaminergic and anti-glutamatergic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdul-Monim Z, Reynolds GP, Neill JC (2003) The atypical antipsychotic ziprasidone, but not haloperidol, improves PCP-induced cognitive deficits in a reversal learning task in the rat. J Psychopharmacol 17:57–66

    Article  PubMed  CAS  Google Scholar 

  • Abel KM, Allin MP, Hemsley DR, Geyer MA (2003) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    PubMed  CAS  Google Scholar 

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554

    PubMed  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Fowler LJ, Whitton PS (2004a) Effects of acute and chronic lamotrigine treatment on basal and stimulated extracellular amino acids in the hippocampus of freely moving rats. Brain Res 1029:41–47

    Article  PubMed  CAS  Google Scholar 

  • Ahmad S, Fowler LJ, Whitton PS (2004b) Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br J Pharmacol 142:136–142

    Article  PubMed  CAS  Google Scholar 

  • Aldenkamp AP, Baker G (2001) A systematic review of the effects of lamotrigine on cognitive function and quality of life. Epilepsy Behav 2:85–91

    Article  PubMed  Google Scholar 

  • Aldenkamp AP, Arends J, Bootsma HP, Diepman L, Hulsman J, Lambrechts D, Leenen L, Majoie M, Schellekens A, de Vocht J (2002) Randomized double-blind parallel-group study comparing cognitive effects of a low-dose lamotrigine with valproate and placebo in healthy volunteers. Epilepsia 43:19–26

    Article  PubMed  CAS  Google Scholar 

  • Allen RM, Young SJ (1978) Phencyclidine-induced psychosis. Am J Psychiatry 135:1081–1084

    PubMed  CAS  Google Scholar 

  • Ambrosio AF, Soares-Da-Silva P, Carvalho CM, Carvalho AP (2002) Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem Res 27:121–130

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Charney D, Oren D, Berman R, Hu X, Cappiello A, Krystal J (2000a) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine. Arch Gen Psychiatry 57:270–276

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Charney D, Oren D, Berman R, Hu X, Cappiello A, Krystal J (2000b) Potentiation of mood elevating effects of ketamine by lamotrigine: support for the mood elevating effect of inhibition of glutamatergic transmission. XXII CINP Congress, abstract P16.024

  • Angrist BM, Gershon S (1970) The phenomenology of experimentally induced amphetamine psychosis—preliminary observations. Biol Psychiatry 2:95–107

    PubMed  CAS  Google Scholar 

  • Angrist B, Peselow E, Rubinstein M, Corwin J, Rotrosen J (1982) Partial improvement in negative schizophrenic symptoms after amphetamine. Psychopharmacology 78:128–130

    Article  PubMed  CAS  Google Scholar 

  • Arana GW, Goff DC, Friedman H, Ornsteen M, Greenblatt DJ, Black B, Shader RI (1986) Does carbamazepine-induced reduction of plasma haloperidol levels worsen psychotic symptoms? Am J Psychiatry 143:650–651

    PubMed  CAS  Google Scholar 

  • Arban R, Maraia G, Brackenborough K, Winyard L, Wilson A, Gerrard P, Large C (2005) Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania. Behav Brain Res 158:123–132

    Article  PubMed  CAS  Google Scholar 

  • Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY (1997) Clozapine and haloperidol modulate N-methyl-d-aspartate and non-N-methyl-d-aspartate receptor mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 283:226–234

    PubMed  CAS  Google Scholar 

  • Ascher JA, Sidhu J, Job S, Theis J (2004) A pharmacokinetic interaction study of lamotrigine and olanzapine. Am Psychiatr Assoc Annu Meet New Res Abstr 155:Abs No NR415

  • Bakker CB, Amini FB (1961) Observations on the psychotomimetic effects of Sernyl. Compr Psychiatry 2:269–280

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Geyer MA (1997) Reversal of phencyclidine-induced deficits in prepulse inhibition by prazosin, an alpha-1 adrenergic antagonist. J Pharmacol Exp Ther 283:666–674

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Swerdlow NR, Geyer MA (1994) Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response. J Pharmacol Exp Ther 271:787–794

    PubMed  CAS  Google Scholar 

  • Barnes TR, McEvedy CJ, Nelson HE (1996) Management of treatment resistant schizophrenia unresponsive to clozapine. Br J Psychiatr Suppl 31:31–40

    Google Scholar 

  • Basan A, Leucht S (2004) Valproate for schizophrenia. Cochrane Database Syst Rev 1:CD004028

    PubMed  Google Scholar 

  • Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31:251–269

    Article  PubMed  CAS  Google Scholar 

  • Berger T, Luscher H-R (2004) Associative somatodendritic interaction in layer V pyramidal neurons is not affected by the antiepileptic drug lamotrigine. Eur J Neurosci 20:1688–1693

    PubMed  Google Scholar 

  • Bergeron R, Meyer T, Coyle J, Greene R (1998) Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A 95:15730–15734

    Article  PubMed  CAS  Google Scholar 

  • Bergquist F, Nissbrandt H (2003) Influence of R-type (Cav2.3) and t-type (Cav3.1-3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience 120:757–764

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B (1999) The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur Arch Psychiatry Clin Neurosci 249(Suppl 4):2–13

    PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia: human and animal model studies. Arch Gen Psychiatry 47:181–188

    PubMed  CAS  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215

    PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  • Braga MFM, Aroniadou-Anderjaska V, Post RM, Li H (2002) Lamotrigine reduces spontaneous and evoked GABAa receptor-mediated synaptic transmission in the basolateral amygdala: implications for its effects in siezure and affective disorders. Neuropharmacology 42:522–529

    Article  PubMed  CAS  Google Scholar 

  • Breese GR, Knapp DJ, Moy SS (2002) Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 26:441–455

    Article  PubMed  CAS  Google Scholar 

  • Brody SA, Geyer, MA, Large CH (2003) Lamotrigine reverses ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology 169:240–246

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Tang CY, Peled S, Gudbjartsson H, Lu D, Hazlett EA, Downhill J, Haznedar M, Fallon JH, Atlas SW (1998) MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. NeuroReport 9:425–430

    PubMed  CAS  Google Scholar 

  • Bunney BG, Potkin SG, Bunney WE (1997) Neuropathological studies of brain tissue in schizophrenia. J Psychiatr Res 31:159–173

    Article  PubMed  CAS  Google Scholar 

  • Cahn W, Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, Schothorst PF, van Engeland H, Kahn RS (2002) Related Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry 59:1002–1010

    Article  PubMed  Google Scholar 

  • Calabresi P, Siniscalchi A, Pisani A, Stefani A, Mercuri NB, Bernardi G (1996) A field potential analysis on the effects of lamotrigine, GP 47779, and felbamate in neocortical slices. Neurology 47:557–562

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Marfia GA, Pisani A, Bernardi G (1999) An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons. Br J Pharmacol 126:689–696

    PubMed  CAS  Google Scholar 

  • Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397–407

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661

    Article  PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75:221–226

    Article  PubMed  CAS  Google Scholar 

  • Carlsson ML, Martin P, Nilsson M, Sorensen SM, Carlsson A, Waters S, Waters N (1999) The 5-HT2A receptor antagonist M100907 is more effective in counteracting NMDA antagonist- than dopamine agonist-induced hyperactivity in mice. J Neural Transm 106:123–129

    Article  PubMed  CAS  Google Scholar 

  • Carpenter WT, Kurz R, Kirkpatrick B, Hanlon TE, Summerfelt AT, Buchanan RW, Waltrip RW, Breier A (1991) Carbamazepine maintenance treatment in outpatient schizophrenics. Arch Gen Psychiatry 48:69–72

    PubMed  Google Scholar 

  • Carter K, Dickerson J, Schoepp DD, Reilly M, Herring N, Williams J, Sallee FR, Sharp JW, Sharp FR (2004) The mGlu2/3 receptor agonist LY379268 injected into cortex or thalamus decreases neuronal injury in retrosplenial cortex produced by NMDA receptor antagonist MK-801: possible implications for psychosis. Neuropharmacology 47:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Casey DE, Daniel DG, Wassef AA, Tracy KA, Wozniak P, Sommerville KW (2003) Effect of divalproex combined with olanzapine or risperidone in patients with an acute exacerbation of schizophrenia. Neuropsychopharmacology 28:182–192

    Article  PubMed  CAS  Google Scholar 

  • Castel-Branco M, Lebre V, Falcao A, Figueiredo I, Caramona M (2003) Relationship between plasma and brain levels and the anticonvulsant effect of lamotrigine in rats. Eur J Pharmacol 482:163–168

    PubMed  CAS  Google Scholar 

  • Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004) The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem 91:189–199

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yang CR (2002) Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J Neurophysiol 87:2324–2336

    PubMed  CAS  Google Scholar 

  • Citrome L, Levine J, Allingham B (2000) Changes in use of valproate and other mood stabilizers for patients with schizophrenia from 1994 to 1998. Psychiatr Serv 51:634–638

    Article  PubMed  CAS  Google Scholar 

  • Citrome L, Casey DE, Daniel DG, Wozniak P, Kochan LD, Tracy KA (2004) Adjunctive divalproex and hostility among patients with schizophrenia receiving olanzapine or risperidone. Psychiatr Serv 55:290–294

    Article  PubMed  Google Scholar 

  • Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53

    Article  PubMed  CAS  Google Scholar 

  • Coward DM (1992) General pharmacology of clozapine. Br J Psychiatr Suppl 17:5–11

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    PubMed  CAS  Google Scholar 

  • Crumrine RC, Bergstrand K, Cooper AT, Faison WL, Cooper BR (1997) Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 28:2230–2236

    PubMed  CAS  Google Scholar 

  • Cunha RA, Coelho JE, Costenla AR, Lopes LV, Parada A, de Mendonça A, Sebastião AM, Ribeiro JA (2002) Effects of carbamazepine and novel 10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives on synaptic transmission in rat hippocampal slices. Pharmacol Toxicol 90:208–213

    Article  PubMed  CAS  Google Scholar 

  • Cunningham MO, Jones RS (2000) The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology 39:2139–2146

    Article  PubMed  CAS  Google Scholar 

  • Daly DA, Moghaddam B (1993) Action of clozapine and haloperidol on extracellular levels of excitatory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 152:61–64

    Article  PubMed  CAS  Google Scholar 

  • Dannhardt G, Kohl BK (1998) The glycine site on the NMDA receptor: structure–activity relationships and possible therapeutic applications. Curr Med Chem 5:253–263

    PubMed  CAS  Google Scholar 

  • Davies N, Russell A, Jones P, Murray RM (1998) Which characteristics of schizophrenia predate psychosis? J Psychiatr Res 32:121–131

    Article  PubMed  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  • Deakin JF, Simpson MD (1997) A two-process theory of schizophrenia: evidence from studies in post-mortem brain. J Psychiatr Res 31:277–295

    Article  PubMed  CAS  Google Scholar 

  • Deicken RF, Merrin EL, Floyd TC, Weiner MW (1995) Correlation between left frontal phospholipids and Wisconsin Card Sort Test performance in schizophrenia. Schizophr Res 14:177–181

    Article  PubMed  CAS  Google Scholar 

  • DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R (1997) Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 74:129–140

    PubMed  CAS  Google Scholar 

  • de Paulis T (2001) M-100907 (Aventis). Curr Opin Investig Drugs 2:123–132

    PubMed  Google Scholar 

  • Deutch AY, Tam SY, Freeman AS, Bowers MB Jr, Roth RH (1987) Mesolimbic and mesocortical dopamine activation induced by phencyclidine: contrasting pattern to striatal response. Eur J Pharmacol 134:257–264

    PubMed  CAS  Google Scholar 

  • Dixon JF, Hokin LE (1997) The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates. Proc Natl Acad Sci U S A 94:4757–4760

    Article  PubMed  CAS  Google Scholar 

  • Dose M, Hellweg R, Yassouridis A, Theison M, Emrich HM (1998) Combined treatment of schizophrenic psychoses with haloperidol and valproate. Pharmacopsychiatry 31:122–125

    PubMed  CAS  Google Scholar 

  • Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21:5546–5558

    PubMed  CAS  Google Scholar 

  • Duncan GE, Zom S, Lieberman JA (1999) Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry 4:418–428

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Miyamoto S, Leipzig JN, Lieberman JA (2000) Comparison of the effects of clozapine, risperidone, and olanzapine on ketamine-induced alterations in regional brain metabolism. J Pharmacol Exp Ther 293:8–14

    PubMed  CAS  Google Scholar 

  • Duncan EJ, Madonick SH, Parwani A, Angrist B, Rajan R, Chakravorty S, Efferen TR, Szilagyi S, Stephanides M, Chappell PB, Gonzenbach S, Ko GN, Rotrosen JP (2001) Clinical and sensorimotor gating effects of ketamine in normals. Neuropsychopharmacology 25:72–83

    Article  PubMed  CAS  Google Scholar 

  • Dursun SM, Deakin JF (2001) Augmenting antipsychotic treatment with lamotrigine or topiramate in patients with treatment-resistant schizophrenia: a naturalistic case–series outcome study. J Psychopharmacol 15:297–301

    PubMed  CAS  Google Scholar 

  • Dursun SM, McIntosh D (1999) Clozapine plus lamotrigine in treatment-resistant schizophrenia (letter). Arch Gen Psychiatry 56:950

    Article  PubMed  CAS  Google Scholar 

  • Evins A, Amico E, Shih V, Goff D (1997) Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm 104:761–766

    Article  PubMed  CAS  Google Scholar 

  • Evins A, Fitzgerald S, Wine L, Roselli R, Goff D (2000) A placebo controlled trial of glycine added to clozapine In schizophrenia. Am J Psychiatry 157:826–828

    PubMed  CAS  Google Scholar 

  • Falke E, Han LY, Arnold SE (2000) Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 93:103–110

    Article  PubMed  CAS  Google Scholar 

  • Farber NB, Jiang XP, Heinkel C, Nemmers B (2002) Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity. Mol Psychiatry 7:726–733

    Article  PubMed  CAS  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O'Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842

    PubMed  CAS  Google Scholar 

  • Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, Calvert CR, Jokel ES, Fienberg AA, Greengard P, Levine MS (2002) Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 88:3010–3020

    PubMed  CAS  Google Scholar 

  • French ED (1994) Phencyclidine and the midbrain dopamine system: electrophysiology and behavior. Neurotoxicol Teratol 16:355–362

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Giannini AJ, Loiselle RH, DiMarzio LR, Giannini MC (1987) Augmentation of haloperidol by ascorbic acid in phencyclidine intoxication. Am J Psychiatry 144:1207–1209

    PubMed  CAS  Google Scholar 

  • Gleason S, Shannon H (1997) Blockade of phencyclidine-induced hyperlocomotion by olanzapine, clozapine and serotonin receptor subtype selective antagonists in mice. Psychopharmacology 129:79–84

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Coyle JT (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377

    PubMed  CAS  Google Scholar 

  • Goff DC, Tsai G, Beal MF, Coyle JT (1995) Tardive dyskinesia and substrates of energy metabolism in CSF. Am J Psychiatry 152:1730–1736

    PubMed  CAS  Google Scholar 

  • Goff D, Henderson D, Evins A, Amico E (1999) A placebo-controlled crossover trial of d-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 45:512–514

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Hennen J, Tsai G, Evins AE, Yurgelun-Todd D, Renshaw P (2002) Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to clozapine. Biol Psychiatry 51:493–497

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, Freudenreich O, Evins AE, Yovel I, Zhang H, Schoenfeld D (2004) A six-month, placebo-controlled trial of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology, Oct 21:Epub ahead of print

  • Goodwin GM, Bowden CL, Calabrese JR, Grunze H, Kasper S, White R, Greene P, Leadbetter R (2004) A pooled analysis of 2 placebo-controlled 18-month trials of lamotrigine and lithium maintenance in bipolar I disorder. J Clin Psychiatry 65:432–441

    Article  PubMed  CAS  Google Scholar 

  • Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK (2004) Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 9:734–755

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Granger P, Biton B, Faure C, Vige X, Depoortere H, Graham D, Langer SZ, Scatton B, Avenet P (1995) Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol 47:1189–1196

    PubMed  CAS  Google Scholar 

  • Griffith JD, Cavanaugh J, Held J, Oates JA (1972) Dextroamphetamine. Evaluation of psychomimetic properties in man. Arch Gen Psychiatry 26:97–100

    PubMed  CAS  Google Scholar 

  • Gronier BS, Rasmussen K (2003) Electrophysiological effects of acute and chronic olanzapine and fluoxetine in the rat prefrontal cortex. Neurosci Lett 349:196–200

    Article  PubMed  CAS  Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    PubMed  CAS  Google Scholar 

  • Grunze H, von Wegerer J, Greene RW, Walden J (1998) Modulation of calcium and potassium currents by lamotrigine. Neuropsychobiology 38:131–138

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, Gur RC (1998) A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 55:145–152

    Article  PubMed  CAS  Google Scholar 

  • Habara T, Hamamura T, Miki M, Ohashi K, Kuroda S (2001) M100907, a selective 5-HT(2A) receptor antagonist, attenuates phencyclidine-induced Fos expression in discrete regions of rat brain. Eur J Pharmacol 417:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hainsworth AH, Spadoni F, Lavaroni F, Bernardi G, Stefani A (2001) Effects of extracellular pH on the interaction of sipatrigine and lamotrigine with high-voltage-activated (HVA) calcium channels in dissociated neurones of rat cortex. Neuropharmacology 40:784–791

    Article  PubMed  CAS  Google Scholar 

  • Hainsworth AH, McNaughton NC, Pereverzev A, Schneider T, Randall AD (2003) Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. Eur J Pharmacol 467:77–80

    Article  PubMed  CAS  Google Scholar 

  • Halonen T, Nissinen J, Pitkanen A (2001) Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res 46:205–223

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hassel B, Tauboll E, Gjerstad L (2001) Chronic lamotrigine treatment increases rat hippocampal GABA shunt activity and elevates cerebral taurine levels. Epilepsy Res 43:153–163

    Article  PubMed  CAS  Google Scholar 

  • Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull 23:403–421

    PubMed  CAS  Google Scholar 

  • Heresco-Levy U (2000) N-Methyl-d-aspartate (NMDA) receptor-based treatment approaches in schizophrenia: the first decade. Int J Neuropsychopharmacol 3:243–258

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U (2003) Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Hertel P, Mathe JM, Nomikos GG, Iurlo M, Mathe AA, Svensson TH (1995) Effects of d-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Behav Brain Res 72:103–114

    Article  PubMed  CAS  Google Scholar 

  • Hesslinger B, Normann C, Langosch JM, Klose P, Berger M, Walden J (1999) Effects of carbamazepine and valproate on haloperidol plasma levels and on psychopathologic outcome in schizophrenic patients. J Clin Psychopharmacol 19:310–315

    Article  PubMed  CAS  Google Scholar 

  • Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M (2003) Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 60:585–594

    Article  PubMed  Google Scholar 

  • Hondo H, Yonezawa Y, Nakahara T, Nakamura K, Hirano M, Uchimura H, Tashiro N (1994) Effect of phencyclidine on dopamine release in the rat prefrontal cortex; an in vivo microdialysis study. Brain Res 633:337–342

    Article  PubMed  CAS  Google Scholar 

  • Hosford DA, Wang Y (1997) Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia 38:408–414

    Article  PubMed  CAS  Google Scholar 

  • Hough CJ, Irwin RP, Gao XM, Rogawski MA, Chuang DM (1996) Carbamazepine inhibition of N-methyl-d-aspartate-evoked calcium influx in rat cerebellar granule cells. J Pharmacol Exp Ther 276:143–149

    PubMed  CAS  Google Scholar 

  • Huang CW, Huang CC, Liu YC, Wu SN (2004) Inhibitory effect of lamotrigine on A-type potassium current in hippocampal neuron-derived H19-7 cells. Epilepsia 45:729–736

    Article  PubMed  CAS  Google Scholar 

  • Idris NF, Repeto P, Neill JC, Large CH (2005) Investigation of the effects of lamotrigine and clozapine in improving reversal-learning impairments induced by acute phencyclidine and d-amphetamine in the rat. Psychopharmacology 179:336–348

    Article  PubMed  CAS  Google Scholar 

  • Idris NF, Repeto P, Neill JC, Large CH (2005) Investigation of the effects of lamotrigine and clozapine to improve reversal learning impairments induced by acute PCP and d-amphetamine in the rat. Psychopharmacology. Epub ahead of print

  • Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467–8472

    Article  PubMed  CAS  Google Scholar 

  • Javitt D, Zukin S (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Balla A, Sershen H, Lajtha A (1999) Reversal of the behavioral and neurochemical effects of phencyclidine by glycine and glycine transport inhibitors. Biol Psychiatry 45:668–679

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Duncan L, Balla A, Sershen H (2004) Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry. Epub

  • Jentsch J, Roth R (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR (2001) Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology 24:66–74

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Anh Tran, Dung Lee, Youngren, KD, Roth, RH (1997) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilisation and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology 17:92–99

    Article  PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103–110

    PubMed  CAS  Google Scholar 

  • Jones LB (2004) Loss of spines and neuropil. Int Rev Neurobiol 59:1–18

    Article  PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45:789–796

    PubMed  CAS  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23

    PubMed  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156:286–293

    PubMed  CAS  Google Scholar 

  • Karper LP, Grillon C, Morrissey K, Abi-Saab D, Morgan CA, Charney DS, Krystal JH (1994) The effect of ketamine on the acoustic startle response. Soc Neurosci Abstr 20:482

    Google Scholar 

  • Keshavan MS, Hogarty GE (1999) Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol 11:525–543

    Article  PubMed  CAS  Google Scholar 

  • Ketter TA, Calabrese JR (2002) Stabilization of mood from below baseline versus above baseline in bipolar disorder: a new nomenclature. J Clin Psychiatry 63:146–151

    PubMed  Google Scholar 

  • Ketter TA, Manji HK, Post RM (2003) Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J Clin Psychopharmacol 23:484–495

    Article  PubMed  CAS  Google Scholar 

  • Ko GN, Korpi ER, Freed WJ, Zalcman SJ, Bigelow LB (1985) Effect of valproic acid on behavior and plasma amino acid concentrations in chronic schizophrenic patients. Biol Psychiatry 20:199–228

    Article  PubMed  Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97:153–179

    Article  PubMed  CAS  Google Scholar 

  • Kossen M, Selten JP, Kahn RS (2001) Elevated clozapine plasma level with lamotrigine. Am J Psychiatry 158:1930

    PubMed  CAS  Google Scholar 

  • Kremer I, Vass A, Gorelik I, Bar G, Blanaru M, Javitt DC, Heresco-Levy U (2004) Placebo-controlled trial of lamotrigine added to conventional and atypical antipsychotics in schizophrenia. Biol Psychiatry 56:441–444

    Article  PubMed  CAS  Google Scholar 

  • Krupitsky EM, Burakov AM, Romanova TN, Grinenko NI, Grinenko AY, Fletcher J, Petrakis IL, Krystal JH (2001) Attenuation of ketamine effects by nimodipine pretreatment in recovering ethanol dependent men: psychopharmacologic implications of the interaction of NMDA and L-type calcium channel antagonists. Neuropsychopharmacology 25:936–947

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MBJ, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Bennett A, D'Souza DC, Abi-Dargham A, Morrissey K, Abi-Saab D, Bremner JD, Bowers MB Jr, Suckow RF, Stetson P, Heninger GR, Charney DS (1998) Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology 135:213–229

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Belger A, D'Souza DC, Anand A, Charney DS, Aghajanian GK, Moghaddam B (1999a) Therapeutic implications of the hyperglutamatergic effects of NMDA antagonists. Neuropsychopharmacology 22:S143–S157

    Article  Google Scholar 

  • Krystal JH, D'Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D, Cassello K, Bowers MB Jr, Vegso S, Heninger GR, Charney DS (1999b) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology (Berl) 145:193–204

    Article  CAS  Google Scholar 

  • Krystal JH, Bennett A, Abi-Saab D, Belger A, Karper LP, D'Souza DC, Lipschitz D, Abi-Dargham A, Charney DS (2000) Dissociation of ketamine effects on rule acquisition and rule implementation: possible relevance to NMDA receptor contributions to executive cognitive functions. Biol Psychiatry 47:137–143

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169:215–233

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Abi-Saab W, Perry E, D'Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology Aug 10. Epub

  • Kumari V, Soni W, Sharma T (2002) Prepulse inhibition of the startle response in risperidone-treated patients: comparison with typical antipsychotics. Schizophr Res 55:139–146

    Article  PubMed  Google Scholar 

  • Kuo C-C (1998) A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuron neuronal Na+ channels. Mol Pharm 54:712–721

    CAS  Google Scholar 

  • Kuzniecky R, Ho S, Pan J, Martin R, Gilliam F, Faught E, Hetherington H (2002) Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 58:368–372

    PubMed  CAS  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  PubMed  CAS  Google Scholar 

  • Langosch JM, Zhou XY, Frick A, Grunze H, Walden J (2000) Effects of lamotrigine on field potentials and long-term potentiation in guinea pig hippocampal slices. Epilepsia 41:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann NY Acad Sci 1003:138–158

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Yoon BW, Roh JK (1999) Neuroprotective effects of lamotrigine enhanced by flunarizine in gerbil global ischemia. Neurosci Lett 265:215–217

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA (2000) GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Brain Res Rev 31:270–276

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Glantz LA, Pierri JN, Sweet RA (2003) Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann NY Acad Sci 1003:102–112

    Article  PubMed  CAS  Google Scholar 

  • Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord 4:137–144

    Article  PubMed  CAS  Google Scholar 

  • Li X, Teneback CC, Nahas Z, Kozel FA, Large C, Cohn J, Bohning DE, George MS (2004) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91:415–433

    Article  PubMed  CAS  Google Scholar 

  • Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, Bilder R (2001) Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry 49:487–499

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M; HGDH Study Group (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370

    Article  PubMed  CAS  Google Scholar 

  • Lim KO, Sullivan EV, Zipursky RB, Pfefferbaum A (1996) Cortical gray matter volume deficits in schizophrenia: a replication. Schizophr Res 20:157–164

    Article  PubMed  CAS  Google Scholar 

  • Lim KO, Hedehus M, Moseley M, de Crespigny A, Sullivan EV, Pfefferbaum A (1999) Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 56:367–374

    Article  PubMed  CAS  Google Scholar 

  • Lingamaneni R, Hemmings HC Jr (1999) Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes. Neurosci Lett 276:127–130

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11:551–568

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Yarov-Yarovoy V, Nobbs M, Clare JJ, Scheuer T, Catterall WA (2003) Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology 44:413–422

    Article  PubMed  CAS  Google Scholar 

  • Loscher W (1999) Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 58:31–59

    Article  PubMed  CAS  Google Scholar 

  • Loscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669–694

    PubMed  Google Scholar 

  • Loscher W, Vetter M, Bohme G, Stoltenburg-Didinger G (1985) In vivo effects of anticonvulsant drugs on nerve terminal (synaptosomal) GABA levels in 11 brain regions of the rat. J Neural Transm 63:157–167

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh NJ, Little L (1969) Selective attention and response strategies as factors in serial reversal learning. Can J Psychol 23:335–346

    Google Scholar 

  • Magee J, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol 60:327–346

    Article  PubMed  CAS  Google Scholar 

  • Mai L, Jope RS, Li X (2002) BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 82:75–83

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Pinals D, Adler C, Elman I, Clifton A, Pickar D, Breier A (1997a) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Adler C, Kennison S, Elman I, Pickar D, Breier A (1997b) Clozapine blunts N-methyl-d-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 42:664–668

    Article  PubMed  CAS  Google Scholar 

  • Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70:1451–1459

    PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA (1989) Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology 2:299–308

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Carlsson ML, Hjorth S (1998) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. NeuroReport 9:2985–2988

    PubMed  CAS  Google Scholar 

  • Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A (2001) Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 58:148–157

    Article  PubMed  CAS  Google Scholar 

  • McLean MJ, Macdonald RL (1986) Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 237:1001–1011

    PubMed  CAS  Google Scholar 

  • Messenheimer JA (1995) Lamotrigine. Epilepsia 36(Suppl 2):S87–S94

    PubMed  CAS  Google Scholar 

  • Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040

    PubMed  CAS  Google Scholar 

  • Miller DW, Abercrombie ED (1996) Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats. Brain Res Bull 40:57–62

    Article  PubMed  CAS  Google Scholar 

  • Mirjana C, Baviera M, Invernizzi RW, Balducci C (2004) The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex. Neuropsychopharmacology 29:1637–1647

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3:27–39

    Article  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with prefrontal cortex. J Neurosci 17:2921–2927

    PubMed  CAS  Google Scholar 

  • Morari M, O'Connor WT, Ungerstedt U, Fuxe K (1994) Dopamine D1 and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by N-methyl-d-aspartic acid. Eur J Pharmacol 256:23–30

    PubMed  CAS  Google Scholar 

  • Motohashi N (1992) GABA receptor alterations after chronic lithium administration. Comparison with carbamazepine and sodium valproate. Prog Neuropsychopharmacol Biol Psychiatry 16:571–579

    Article  PubMed  CAS  Google Scholar 

  • Motohashi N, Ikawa K, Kariya T (1989) GABAB receptors are up-regulated by chronic treatment with lithium or carbamazepine. GABA hypothesis of affective disorders? Eur J Pharmacol 166:95–99

    PubMed  CAS  Google Scholar 

  • Nakki R, Sharp FR, Sagar SM, Honkaniemi J (1996) Effects of phencyclidine on immediate early gene expression in the brain. J Neurosci Res 45:13–27

    Article  PubMed  CAS  Google Scholar 

  • Neppe VM (1983) Carbamazepine as adjunctive treatment in nonepileptic chronic inpatients with EEG temporal lobe abnormalities. J Clin Psychiatry 44:326–331

    PubMed  CAS  Google Scholar 

  • Ninan I, Wang RY (2003) Modulation of the ability of clozapine to facilitate NMDA- and electrically evoked responses in pyramidal cells of the rat medial prefrontal cortex by dopamine: pharmacological evidence. Eur J Neurosci 17:1306–1312

    PubMed  Google Scholar 

  • Nonaka S, Katsube N, Chuang DM (1998) Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine. J Pharmacol Exp Ther 286:539–547

    PubMed  CAS  Google Scholar 

  • Nordstrom A-L, Farde L, Wiesel F-A, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects. Biol Psychiatry 33:227–235

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    PubMed  CAS  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  PubMed  CAS  Google Scholar 

  • Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Brain Res Rev 25:312–334

    Article  PubMed  CAS  Google Scholar 

  • Parepally H, Chakravorty S, Levine J, Brar JS, Patel AM, Baird JW, Chalasani L, Delaney JA, Atzert R, Chengappa KN (2002) The use of concomitant medications in psychiatric inpatients treated with either olanzapine or other antipsychotic agents: a naturalistic study at a state psychiatric hospital. Prog Neuropsychopharmacol Biol Psychiatry 26:437–440

    Article  PubMed  CAS  Google Scholar 

  • Paulson L, Martin P, Persson A, Nilsson CL, Ljung E, Westman-Brinkmalm A, Eriksson PS, Blennow K, Davidsson P (2003) Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J Neurosci Res 71:526–533

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Braff DL (1994) Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry 151:363–367

    PubMed  CAS  Google Scholar 

  • Perry W, Geyer MA, Braff DL (1999) Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Arch Gen Psychiatry 56:277–281

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Minassian A, Feifel D, Braff DL (2001a) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Heaton RK, Potterat E, Roebuck T, Minassian A, Braff DL (2001b) Working memory in schizophrenia: transient “online” storage versus executive functioning. Schizophr Bull 27:157–176

    PubMed  CAS  Google Scholar 

  • Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5:767–774

    PubMed  CAS  Google Scholar 

  • Postma T, Krupp E, Li XL, Post RM, Weiss SR (2000) Lamotrigine treatment during amygdala-kindled seizure development fails to inhibit seizures and diminishes subsequent anticonvulsant efficacy. Epilepsia 41:1514–1521

    PubMed  CAS  Google Scholar 

  • Potkin S, Jin Y, Bunney B, Costa J, Gulasekaram B (1999) Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. Am J Psychiatry 156:145–147

    PubMed  CAS  Google Scholar 

  • Rainey JMJ, Crowder MK (1975) Prolonged psychosis attributable to phencyclidine: a report of three cases. Am J Psychiatry 132:1076–1078

    PubMed  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Riehemann S, Volz HP, Stutzer P, Smesny S, Gaser C, Sauer H (2001) Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test—a fMRI study. Eur Arch Psychiatry Clin Neurosci 251:66–71

    PubMed  CAS  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10:685–692

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Prieto J, Budd DC, Herrero I, Vazquez E, Nicholls DG (1996) Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci 19:235–239

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD, Marek GJ (2002) Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schiozophrenia? Curr Drug Targets CNS Neurol Disord 1:215–225

    Article  PubMed  CAS  Google Scholar 

  • Schotte A, Janssen P, Gommeren W, Luyten W, Vangompel P, Lesage A, Deloore K, Leysen J (1996) Risperidone compared with new and reference antipsychotic drugs—in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    PubMed  CAS  Google Scholar 

  • Schwabe K, Brosda J, Wegener N, Koch M (2005) Clozapine enhances disruption of prepulse inhibition after sub-chronic dizocilpine- or phencyclidine-treatment in Wistar rats. Pharmacol Biochem Behav 80:213–219

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7:261–284

    PubMed  CAS  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47:27–38

    PubMed  Google Scholar 

  • Shinotoh H, Vingerhoets FJ, Lee CS, Uitti RJ, Schulzer M, Calne DB, Tsui J (1997) Lamotrigine trial in idiopathic parkinsonism: a double-blind, placebo-controlled, crossover study. Neurology 48:1282–1285

    PubMed  CAS  Google Scholar 

  • Shi WX, Zhang XX (2003) Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine. J Pharmacol Exp Ther 305:680–687

    Article  PubMed  CAS  Google Scholar 

  • Shuaib A, Mahmood RH, Wishart T, Kanthan R, Murabit MA, Ijaz S, Miyashita H, Howlett W (1995) Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study. Brain Res 702:199–206

    Article  PubMed  CAS  Google Scholar 

  • Smith AG, Neill JC, Costall B (1999) The dopamine D3/D2 receptor agonist 7-OH-DPAT induces cognitive impairment in the common marmoset. Pharmacol Biochem Behav 63:201–211

    Article  PubMed  CAS  Google Scholar 

  • Southam E, Kirkby D, Higgins GA, Hagan RM (1998) Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake in rats. Eur J Pharmacol 358:19–24

    PubMed  CAS  Google Scholar 

  • Stedman TJ, Whiteford HA, Eyles D, Welham JL, Pond SM (1991) Effects of nifedipine on psychosis and tardive dyskinesia in schizophrenic patients. J Clin Psychopharmacol 11:43–47

    PubMed  CAS  Google Scholar 

  • Stefani A, Spadoni F, Siniscalchi A, Bernardi G (1996) Lamotrigine inhibits Ca2+ currents in cortical neurons: functional implications. Eur J Pharmacol 307:113–116

    PubMed  CAS  Google Scholar 

  • Steinpreis RE, Salamone JD (1993) The role of nucleus accumbens dopamine in the neurochemical and behavioral effects of phencyclidine: a microdialysis and behavioral study. Brain Res 612:263–270

    Article  PubMed  CAS  Google Scholar 

  • Stratton SC, Large CH, Cox B, Davies G, Hagan RM (2003) Effects of lamotrigine and levetiracetam on seizure development in a rat amygdala kindling model. Epilepsy Res 53:95–106

    Article  PubMed  CAS  Google Scholar 

  • Suddath RL, Straw GM, Freed WJ, Bigelow LB, Kirch DG, Wyatt RJ (1991) A clinical trial of nifedipine in schizophrenia and tardive dyskinesia. Pharmacol Biochem Behav 39:743–745

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Kitai ST (1997) State-dependent regulation of neuronal excitability by dopamine. Nihon Shinkei Seishin Yakurigaku Zasshi 17:105–110

    PubMed  CAS  Google Scholar 

  • Surmeier DJ, Eberwine J, Wilson CJ, Stefani A, Kitai ST (1992) Dopamine receptor subtypes co-localise in rat striatonigral neurons. Proc Natl Acad Sci U S A 89:10178–10182

    PubMed  CAS  Google Scholar 

  • Svensson TH (2000) Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24:285–301

    PubMed  CAS  Google Scholar 

  • Takahara A, Konda T, Enomoto A, Kondo N (2004) Neuroprotective effects of a dual L/N-type Ca(2+) channel blocker cilnidipine in the rat focal brain ischemia model. Biol Pharm Bull 27:1388–1391

    Article  PubMed  CAS  Google Scholar 

  • Takahata R, Moghaddam B (2000) Target-specific glutamatergic regulation of dopamine neurons in the ventral tegmental area. J Neurochem 75:1775–1778

    Article  PubMed  CAS  Google Scholar 

  • Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–1124

    PubMed  CAS  Google Scholar 

  • Talvik-Lotfi M, Nyberg S, Nordstrom AL, Ito H, Halldin C, Brunner F, Farde L (2000) High 5HT2A receptor occupancy in M100907-treated schizophrenic patients. Psychopharmacology 148:400–403

    Article  PubMed  CAS  Google Scholar 

  • Tauscher J, Hussain T, Agid O, Verhoeff NP, Wilson AA, Houle S, Remington G, Zipursky RB, Kapur S (2004) Equivalent occupancy of dopamine D1 and D2 receptors with clozapine: differentiation from other atypical antipsychotics. Am J Psychiatry 161:1620–1625

    Article  PubMed  Google Scholar 

  • Taverna S, Mantegazza M, Franceschetti S, Avanzini G (1998) Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 32:304–308

    Article  PubMed  CAS  Google Scholar 

  • Tekin S, Aykut-Bingol C, Tanridag T, Aktan S (1998) Antiglutamatergic therapy in Alzheimer's disease—effects of lamotrigine. J Neural Transm 105:295–303

    Article  PubMed  CAS  Google Scholar 

  • Tiihonen J, Hallikainen T, Ryynanen OP, Repo-Tiihonen E, Kotilainen I, Eronen M, Toivonen P, Wahlbeck K, Putkonen A (2003) Lamotrigine in treatment-resistant schizophrenia: a randomized placebo-controlled crossover trial. Biol Psychiatry 54:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, Toga AW, Rapoport JL (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci U S A 98:11650–11655

    Article  PubMed  CAS  Google Scholar 

  • Tong ZY, Overton PG, Clark D (1995) Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Res 674:63–74

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung L-C, Lange N, Coyle J (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung L-C, Tsai I-C, Tsai C-W, Coyle J (1999) d-Serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 156:1822–1825

    PubMed  CAS  Google Scholar 

  • Tsai G, Lane HY, Yang P, Chong MY, Lange N (2004) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 55:452–456

    Article  PubMed  CAS  Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2005) Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 72:225–234

    Article  PubMed  Google Scholar 

  • Ueda Y, Willmore LJ (2000) Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 133:334–339

    Article  PubMed  CAS  Google Scholar 

  • Vajda FJ (2002) Valproate and neuroprotection. J Clin Neurosci 9:508–514

    Article  PubMed  CAS  Google Scholar 

  • van Berckel BN, Hijman R, van der Linden JA, Westenberg HG, van Ree JM, Kahn RS (1996) Efficacy and tolerance of d-cycloserine in drug-free schizophrenic patients. Biol Psychiatry 40:1298–1300

    Article  PubMed  Google Scholar 

  • van Berckel BN, Oranje B, van Ree JM, Verbaten MN, Kahn RS (1998) The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology 137:271–281

    Article  PubMed  Google Scholar 

  • van Berckel BN, Evenblij CN, van Loon BJ, Maas MF, van der Geld MA, Wynne HJ, van Ree JM, Kahn RS (1999) d-Cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology 21:203–210

    Article  PubMed  Google Scholar 

  • van Kammen DP, Boronow JJ (1988) Dextro-amphetamine diminishes negative symptoms in schizophrenia. Int Clin Psychopharmacol 3:111–121

    PubMed  Google Scholar 

  • Varty GB, Higgins GA (1995) Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology 122:15–26

    PubMed  CAS  Google Scholar 

  • Varty GB, Bakshi VP, Geyer MA (1999) M100907, a serotonin 5HT2A receptor antagonist and putative antipsychotic, blocks dizocilpine-induced prepulse inhibition deficits in Sprague–Dawley and Wistar rats. Neuropsychopharmacology 20:311–321

    Article  PubMed  CAS  Google Scholar 

  • Vita A, Dieci M, Giobbio GM, Tenconi F, Invernizzi G (1997) Time course of cerebral ventricular enlargement in schizophrenia supports the hypothesis of its neurodevelopmental nature. Schizophr Res 23:25–30

    Article  PubMed  CAS  Google Scholar 

  • Volz HP, Gaser C, Hager F, Rzanny R, Mentzel HJ, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1997) Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test—a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 75:145–157

    PubMed  CAS  Google Scholar 

  • von Wegerer J, Hesslinger B, Berger M, Walden J (1997) A calcium antagonistic effect of the new antiepileptic drug lamotrigine. Eur Neuropsychopharmcol 7:77–81

    Google Scholar 

  • Walden J, Altrup U, Reith H, Speckmann EJ (1993) Effects of valproate on early and late potassium currents of single neurons. Eur Neuropsychopharmacol 3:137–141

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Baumann PA, Wicki P, Feldtrauer J-J, Stierlin C, Schmutz M (1995) Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913

    PubMed  CAS  Google Scholar 

  • Walker MC, Tong X, Perry H, Alavijeh MS, Patsalos PN (2000) Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine. Br J Pharmacol 130:242–248

    PubMed  CAS  Google Scholar 

  • Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW (1996a) Presynaptic inhibition of excitatory neurotransmission by lamotrigine in the rat amygdalar neurons. Synapse 24:248–255

    Article  PubMed  CAS  Google Scholar 

  • Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW (1996b) Inhibition of N-type calcium currents by lamotrigine in rat amygdalar neurones. NeuroReport 7:3037–3040

    Article  PubMed  CAS  Google Scholar 

  • Weike AI, Bauer U, Hamm AO (2000) Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. Biol Psychiatry 47:61–70

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1996) On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology 14(3 Suppl):1S–11S

    Article  Google Scholar 

  • Weinberger DR (1999) Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45:395–402

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF (1996) Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci 351:1495–1503

    PubMed  CAS  Google Scholar 

  • Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Mol Brain Res 88:37–53

    Article  PubMed  CAS  Google Scholar 

  • Willow M, Gonoi T, Catterall WA (1995) Voltage clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 27:549–558

    Google Scholar 

  • Wood SJ, Velakoulis D, Smith DJ, Bond D, Stuart GW, McGorry PD, Brewer WJ, Bridle N, Eritaia J, Desmond P, Singh B, Copolov D, Pantelis C (2001) A longitudinal study of hippocampal volume in first episode psychosis and chronic schizophrenia. Schizophr Res 52:37–46

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Hagan RM (1998) Cellular and molecular actions of lamotrigine: possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology 38:119–130

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Lancaster B, Peakman T, Garthwaite J (1995) Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hippocampal neurones. Pflügers Arch 430:437–446

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Kanba S, Ashikari I, Ohnishi K, Yagi G, Asai M (1996) Nilvadipine is effective for chronic schizophrenia in a double-blind placebo-controlled study. J Clin Psychopharmacol 16:437–439

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Cooperman MA (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14:4159–4166

    PubMed  CAS  Google Scholar 

  • Yung AR, McGorry PD (1996) The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophr Bull 22:353–370

    PubMed  CAS  Google Scholar 

  • Zhang W, Bymaster FP (1999) The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology (Berl) 141:267–278

    Article  CAS  Google Scholar 

  • Zhu G, Okada M, Murakami T, Kawata Y, Kamata A, Kaneko S (2002) Interaction between carbamazepine, zonisamide and voltage-sensitive Ca2+ channel on acetylcholine release in rat frontal cortex. Epilepsy Res 49:49–60

    Article  PubMed  CAS  Google Scholar 

  • Zipp F, Burklin F, Stecker K, Baas H, Fischer PA (1995) Lamotrigine in Parkinson's disease—a double blind study. J Neural Transm Parkinsons Dis Dement Sect 10:199–206

    Article  CAS  Google Scholar 

  • Zona C, Avoli M (1990) Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 81:313–317

    Article  PubMed  CAS  Google Scholar 

  • Zona C, Tancredi V, Palma E, Pirrone GC, Avoli M (1990) Potassium currents in rat cortical neurons in culture are enhanced by the antiepileptic drug carbamazepine. Can J Physiol Pharmacol 68:545–547

    PubMed  CAS  Google Scholar 

  • Zona C, Tancredi V, Longone P, D'Arcangelo G, D'Antuono M, Manfredi M, Avoli M (2002) Neocortical potassium currents are enhanced by the antiepileptic drug lamotrigine. Epilepsia 43:685–690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Barbara Wilson, Drs. Dan Javitt, Gary Evoniuk, Dr. Jo Neill and Prof. Mark Geyer for helpful discussion. We would also like to thank the reviewers for their many valuable comments, suggestions, and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Large.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Large, C.H., Webster, E.L. & Goff, D.C. The potential role of lamotrigine in schizophrenia. Psychopharmacology 181, 415–436 (2005). https://doi.org/10.1007/s00213-005-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0020-9

Keywords

Navigation