Skip to main content
Log in

Forced swimming test in mice: a review of antidepressant activity

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Among all animal models, the forced swimming test (FST) remains one of the most used tools for screening antidepressants.

Objective

This paper reviews some of the main aspects of the FST in mice. Most of the sensitivity and variability factors that were assessed on the FST are summarized.

Mechanisms

We have summarized data found in the literature of antidepressant effects on the FST in mice. From this data set, we have extrapolated information on baseline levels of strain, and sensitivity against antidepressants.

Results

We have shown that many parameters have to be considered in this test to gain good reliability. Moreover, there was a fundamental inter-strain difference of response in the FST.

Conclusions

The FST is a good screening tool with good reliability and predictive validity. Strain is one of the most important parameters to consider. Swiss and NMRI mice can be used to discriminate the mechanisms of action of drugs. CD-1 seems to be the most useful strain for screening purposes, but this needs to be confirmed with some spontaneous locomotor activity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

8-OH-DPAT:

8-Hydroxy-2-(di-n-propylamino)tetralin

Atypical:

Antidepressants with an atypical activity

BDNF:

Brain-derived neurotrophic factor

DRI:

Dopamine re-uptake inhibitors

FST:

Forced swimming test

MAO-I:

Monoamine oxidase inhibitors

NA:

Noradrenaline

NOS synthase:

Nitric oxide synthase

NRI:

Noradrenaline re-uptake inhibitors

SNRI:

Serotonin and noradrenaline re-uptake inhibitors

SSRI:

Selective serotonin re-uptake inhibitors

TCAs:

Tricyclic agents

TST:

Tail suspension test

References

  • Alcaro A, Cabib S, Ventura R, Puglisi-Allegra S (2002) Genotype- and experience-dependent susceptibility to depressive-like responses in the forced-swimming test. Psychopharmacology 164:138–143

    Article  CAS  PubMed  Google Scholar 

  • Aley KO, Kulkarni SK (1989) GABA-mediated modification of despair behavior in mice. Naunyn Schmiedebergs Arch Pharmacol 339:306–311

    CAS  PubMed  Google Scholar 

  • Alonso SJ, Castellano MA, Afonso D, Rodriguez M (1991) Sex differences in behavioral despair: relationships between behavioral despair and open field activity. Physiol Behav 49:69–72

    Article  CAS  PubMed  Google Scholar 

  • Andreatini R, Bacellar LF (2000) Animal models: trait or state measure? The test-retest reliability of the elevated plus-maze and behavioral despair. Prog Neuropsychopharmacol Biol Psychiatry 24:549–560

    Article  CAS  PubMed  Google Scholar 

  • Anjaneyulu M, Chopra K, Kaur I (2003) Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J Med Food 6:391–395

    Article  CAS  PubMed  Google Scholar 

  • Arai I, Tsuyuki Y, Shiomoto H, Satoh M, Otomo S (2000) Decreased body temperature dependent appearance of behavioral despair in the forced swimming test in mice. Pharmacol Res 42:171–176

    Article  CAS  PubMed  Google Scholar 

  • Baez M, Volosin M (1994) Corticosterone influences forced swim-induced immobility. Pharmacol Biochem Behav 49:729–736

    Article  CAS  PubMed  Google Scholar 

  • Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187–192

    Article  CAS  PubMed  Google Scholar 

  • Biziere K, Kan JP, Souilhac J, Muyard JP, Roncucci R (1982) Pharmacological evaluation of minaprine dihydrochloride, a new psychotropic drug. Arzneimittelforschung 32:824–831

    CAS  PubMed  Google Scholar 

  • Biziere K, Worms P, Kan JP, Mandel P, Garattini S, Roncucci R (1985) Minaprine, a new drug with antidepressant properties. Drugs Exp Clin Res 11:831–840

    CAS  PubMed  Google Scholar 

  • Bloch RG, Dooneief AS, Buchberg AS, Spellman S (1954) The clinical effect of isoniazid and iproniazid in the treatment of pulmonary tuberculosis. Ann Int Med 40:881–900

    CAS  PubMed  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 94:147–160

    Article  CAS  PubMed  Google Scholar 

  • Bourin M (1990) Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam Clin Pharmacol 4:49–64

    CAS  PubMed  Google Scholar 

  • Bourin M, Colombel MC, Malinge M, Bradwejn J (1991) Clonidine as a sensitizing agent in the forced swimming test for revealing antidepressant activity. J Psychiatry Neurosci 16:199–203

    CAS  PubMed  Google Scholar 

  • Bourin M, Redrobe JP, Hascoet M, Baker GB, Colombel MC (1996) A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 20:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Bourin M, Colombel MC, Redrobe JP, Nizard J, Hascoet M, Baker GB (1998) Evaluation of efficacies of different classes of antidepressants in the forced swimming test in mice at different ages. Prog Neuropsychopharmacol Biol Psychiatry 22:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 16:9–21

    Article  CAS  PubMed  Google Scholar 

  • Browne RG (1979) Effects of antidepressants and anticholinergics in a mouse “behavioral despair” test. Eur J Pharmacol 58:331–334

    Article  CAS  PubMed  Google Scholar 

  • Bunney WE, Jr, Davis JM (1965) Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry 13:483–494

    CAS  PubMed  Google Scholar 

  • Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289:463–465

    Article  CAS  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Ventura R (2002) The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behav Brain Res 130:103–109

    Google Scholar 

  • Clenet F, De Vos A, Bourin M (2001) Involvement of 5-HT(2C) receptors in the anti-immobility effects of antidepressants in the forced swimming test in mice. Eur Neuropsychopharmacol 11:145–152

    Google Scholar 

  • Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1264

    CAS  PubMed  Google Scholar 

  • Costa E, Garattini S, Valzelli L (1960) Interactions between reserpine, chlorpromazine, and imipramine. Experientia 16:461–463

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–3577

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Dalvi A, Jin SH, Hirsch BR, Lucki I, Thomas SA (2001) Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 298:651–657

    CAS  PubMed  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Dalvi A, Lucki I (1999) Murine models of depression. Psychopharmacology 147:14–16

    Article  CAS  PubMed  Google Scholar 

  • Da-Rocha MA Jr, Puech AJ, Thiebot MH (1997) Influence of anxiolytic drugs on the effects of specific serotonin reuptake inhibitors in the forced swimming test in mice. J Psychopharmacol 11:211–218

    CAS  PubMed  Google Scholar 

  • David DJ, Bourin M, Hascoet M, Colombel MC, Baker GB, Jolliet P (2001a) Comparison of antidepressant activity in 4- and 40-week-old male mice in the forced swimming test: involvement of 5-HT1A and 5-HT1B receptors in old mice. Psychopharmacology 153:443–449

    Article  CAS  PubMed  Google Scholar 

  • David DJ, Nic Dhonnchadha BA, Jolliet P, Hascoet M, Bourin M (2001) Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav Brain Res 119:203–211

    Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 166:373–382

    CAS  PubMed  Google Scholar 

  • De Graaf JS, Van Riezen H, Berendsen HHG, Van Delft AML (1985) A set of behavioural tests predicting antidepressant activity. Curr Trends Rev 5:291–301

    Google Scholar 

  • Denenberg VH, Talgo NW, Waters NS, Kenner GH (1990) A computer-aided procedure for measuring swim rotation. Physiol Behav 47:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73:43–46

    Google Scholar 

  • Devoize JL, Rigal F, Eschalier A, Trolese JF (1982) Naloxone inhibits clomipramine in mouse forced swimming test. Eur J Pharmacol 78:229–231

    Article  CAS  PubMed  Google Scholar 

  • Devoize JL, Rigal F, Eschalier A, Trolese JF, Renoux M (1984) Influence of naloxone on antidepressant drug effects in the forced swimming test in mice. Psychopharmacology 84:71–75

    CAS  PubMed  Google Scholar 

  • Dubocovich ML, Mogilnicka E, Areso PM (1990) Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test. Eur J Pharmacol 182:313–325

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    Google Scholar 

  • Easton A, Arbuzova J, Turek FW (2003) The circadian Clock mutation increases exploratory activity and escape-seeking behavior. Genes Brain Behav 2:11–19

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 54:994–1005

    CAS  PubMed  Google Scholar 

  • Eschalier A, Rigal F, Devoize JL, Trolese JF, Grillon C (1983) Morphine pretreatment reduces clomipramine effect in mouse forced-swimming test. Eur J Pharmacol 91:505–507

    CAS  PubMed  Google Scholar 

  • Gardier AM, Trillat AC, Malagie I, David D, Hascoet M, Colombel MC, Jolliet P, Jacquot C, Hen R, Bourin M (2001) Recepteurs 5-HT1B de la serotonine et effets antidepresseurs des inhibiteurs de recapture selectif de la serotonine. CR Acad Sci Paris Life 324:433–441

    CAS  Google Scholar 

  • Geyer MA, Markou A (2000) Animal models of psychiatric disorders. In: The American College of Neuropsychopharmacology (ed) The fourth generation of progress online. ACNP

  • Guo W, Todd K, Bourin M, Hascoet M, Kouadio F (1996) Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade. Pharmacol Biochem Behav 54:725–7300

    CAS  PubMed  Google Scholar 

  • Harkin AJ, Bruce KH, Craft B, Paul IA (1999) Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 372:207–213

    Article  CAS  PubMed  Google Scholar 

  • Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11

    CAS  PubMed  Google Scholar 

  • Hilakivi LA, Ota M, Lister RG (1989) Effect of isolation on brain monoamines and the behavior of mice in tests of exploration, locomotion, anxiety and behavioral ’despair’. Pharmacol Biochem Behav 33:371–374

    Article  CAS  PubMed  Google Scholar 

  • Hirani K, Khisti RT, Chopde CT (2002) Behavioral action of ethanol in Porsolt’s forced swim test: modulation by 3 alpha-hydroxy-5 alpha-pregnan-20-one. Neuropharmacology 43:1339–1350

    Google Scholar 

  • Holmes A (2003a) Mouse behavioral models of anxiety and depression. In: Crawley JN (ed) Mouse behavioral phenotyping. Society for Neuroscience, Washington D.C., pp 43–47

    Google Scholar 

  • Holmes PV (2003b) Rodent models of depression: reexamining validity without anthropomorphic inference. Crit Rev Neurobiol 15:143–174

    Article  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Murphy DL, Crawley JN (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27:914–9233

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Nestler EJ (1996) Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiatry 153:151–162

    CAS  PubMed  Google Scholar 

  • Karolewicz B, Paul IA (2001) Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. Eur J Pharmacol 415:197–201

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Katayama T, Iwata H, Yamamura M, Matsuoka Y, Narita H (1998) In vivo characterization of T-794, a novel reversible inhibitor of monoamine oxidase-A, as an antidepressant with a wide safety margin. J Pharmacol Exp Ther 284:983–990

    CAS  PubMed  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    Article  CAS  PubMed  Google Scholar 

  • Klerman GL, Cole JO (1965) Clinical pharmacology of imipramine and related antidepressant compounds. Pharmacol Rev 17:101–141

    CAS  PubMed  Google Scholar 

  • Krahe TE, Filgueiras CC, Schmidt SL (2002) Effects of rotational side preferences on immobile behavior of normal mice in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 26:169–176

    Article  PubMed  Google Scholar 

  • Kuhn R (1957) Treatment of depressive states with an iminodibenzyl derivative (G 22355). Schweiz Med Wochenschr 87:1135–1140

    CAS  PubMed  Google Scholar 

  • Loomer HP, Saunders JC, Kline NS (1957) A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep Am Psychiatr Assoc 135:129–141

    CAS  PubMed  Google Scholar 

  • Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    CAS  PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155:315–322

    Article  CAS  PubMed  Google Scholar 

  • Luttinger D, Freedman M, Hamel L, Ward SJ, Perrone M (1985) The effects of serotonin antagonists in a behavioral despair procedure in mice. Eur J Pharmacol 107:53–58

    Article  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT, Fahnestock M (2001) Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 115:1145–11533

    Article  CAS  PubMed  Google Scholar 

  • Malinge M, Bourin M, Colombel MC, Larousse C (1988) Additive effects of clonidine and antidepressant drugs in the mouse forced-swimming test. Psychopharmacology 96:104–109

    CAS  PubMed  Google Scholar 

  • Miura H, Naoi M, Nakahara D, Ohta T, Nagatsu T (1996) Effects of moclobemide on forced-swimming stress and brain monoamine levels in mice. Pharmacol Biochem Behav 53:469–475

    Article  CAS  PubMed  Google Scholar 

  • Mogilnicka E, Czyrak A, Maj J (1987) Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 138:413–416

    Article  CAS  PubMed  Google Scholar 

  • Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, Meuth S, Nagy A, Greene RW, Nestler EJ (2004) Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 101:10827–10832

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (1998) Antidepressant treatments in the 21st century. Biol Psychiatry 44:526–533

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S (2002) Preclinical models: status of basic research in depression. Biol Psychiatry 52:503–528

    Article  PubMed  Google Scholar 

  • Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T (1982) A new behavioral test for antidepressant drugs. Eur J Pharmacol 83:171–175

    Article  CAS  PubMed  Google Scholar 

  • O’Neil MF, Moore NA (2003) Animal models of depression: are there any? Hum Psychopharmacol 18:239–254

    Article  PubMed  Google Scholar 

  • Porsolt RD (2000) Animal models of depression: utility for transgenic research. Rev Neurosci 11:53–58

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57:201–210

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra V, Kaur G, Kulkarni SK (2000) Anti-depressant action of melatonin in chronic forced swimming-induced behavioral despair in mice, role of peripheral benzodiazepine receptor modulation. Eur Neuropsychopharmacol 10:473–481

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Pinot P, Bourin M (1996) The effect of the potassium channel activator, cromakalim, on antidepressant drugs in the forced swimming test in mice. Fundam Clin Pharmacol 10:524–5288

    CAS  PubMed  Google Scholar 

  • Redrobe JP, Bourin M, Colombel MC, Baker GB (1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology 138:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rogoz Z, Skuza G, Maj J (1999) Pharmacological profile of milnacipran, a new antidepressant, given acutely. Pol J Pharmacol 51:317–322

    CAS  PubMed  Google Scholar 

  • Schechter MD, Chance WT (1979) Non-specificity of “behavioral despair” as an animal model of depression. Eur J Pharmacol 60:139–142

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    CAS  PubMed  Google Scholar 

  • Schramm NL, McDonald MP, Limbird LE (2001) The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 21:4875–4882

    CAS  PubMed  Google Scholar 

  • Scotto di Tella AM, Mercier J (1981) Influence of the procedure of administration in the activity of some antidepressant or disinhibiting drugs upon behavioural despair (author’s transl). J Pharmacol 12:179–188

    CAS  PubMed  Google Scholar 

  • Selikoff IJ, Robitzek EH (1952) Tuberculosis chemotherapy with hydrazine derivatives of isonicotinic acid. Dis Chest 21:385–438

    CAS  PubMed  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Slattery DA, Hudson AL, Nutt DJ (2004) Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol 18:1–21

    CAS  PubMed  Google Scholar 

  • Stenger A, Couzinier JP, Briley M (1987) Psychopharmacology of midalcipran, 1-phenyl-1-diethyl-amino-carbonyl-2-aminomethylcyclopropane hydrochloride (F 2207), a new potential antidepressant. Psychopharmacology 91:147–153

    Article  CAS  PubMed  Google Scholar 

  • Sunal R, Gumusel B, Kayaalp SO (1994) Effect of changes in swimming area on results of “behavioral despair test”. Pharmacol Biochem Behav 49:891–896

    Article  CAS  PubMed  Google Scholar 

  • Szymczyk G, Zebrowska-Lupina I (2000) Influence of antiepileptics on efficacy of antidepressant drugs in forced swimming test. Pol J Pharmacol 52:337–344

    CAS  PubMed  Google Scholar 

  • Taltavull JF, Chefer VI, Shippenberg TS, Kiyatkin EA (2003) Severe brain hypothermia as a factor underlying behavioral immobility during cold-water forced swim. Brain Res 975:244–247

    Article  CAS  PubMed  Google Scholar 

  • Thierry B, Steru L, Simon P, Porsolt RD (1986) The tail suspension test: ethical considerations. Psychopharmacology 90:284–285

    Article  CAS  PubMed  Google Scholar 

  • Voikar V, Koks S, Vasar E, Rauvala H (2001) Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 72:271–281

    Article  CAS  PubMed  Google Scholar 

  • Wahlsten D, Metten P, Phillips TJ, Boehm SL II, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311

    Article  PubMed  Google Scholar 

  • West AP (1990) Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 14:863–877

    Article  CAS  PubMed  Google Scholar 

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16

    CAS  PubMed  Google Scholar 

  • Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13:169–1888

    CAS  PubMed  Google Scholar 

  • Wong ML, Licinio J (2004) From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 3:136–151

    Article  CAS  PubMed  Google Scholar 

  • Yates G, Panksepp J, Ikemoto S, Nelson E, Conner R (1991) Social isolation effects on the “behavioral despair” forced swimming test: effect of age and duration of testing. Physiol Behav 49:347–353

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Watanabe A, Ishitsuka Y, Nakaya A, Nakatani N (2002) Identification of multiple genetic loci linked to the propensity for “behavioral despair” in mice. Genome Res 12:357–366

    Article  CAS  PubMed  Google Scholar 

  • Zeller EA, Barsky J (1952) In vivo inhibition of liver and brain monoamine oxidase by 1-Isonicotinyl-2-isopropyl hydrazine. Proc Soc Exp Biol Med 81:459–461

    CAS  PubMed  Google Scholar 

  • Zocchi A, Varnier G, Arban R, Griffante C, Zanetti L, Bettelini L, Marchi M, Gerrard PA, Corsi M (2003) Effects of antidepressant drugs and GR 205171, an neurokinin-1 (NK1) receptor antagonist, on the response in the forced swim test and on monoamine extracellular levels in the frontal cortex of the mouse. Neurosci Lett 345:73–76

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bourin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit-Demouliere, B., Chenu, F. & Bourin, M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177, 245–255 (2005). https://doi.org/10.1007/s00213-004-2048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2048-7

Keywords

Navigation