Skip to main content

The Use of Animal Models in Defining Antidepressant Response: A Translational Approach

  • Chapter
  • First Online:
Understanding Depression
  • 2347 Accesses

Abstract

Animal models of depression are widely used by the pharmaceutical industry to find new molecules that are likely to have antidepressant activity in humans but also to better understand the mechanism of action of antidepressants. It is difficult to choose a model that is relevant to the purpose that has been set. These models are compromises between clinical complexity and the simplicity of the development of the experimental paradigm. Five of the most commonly utilised behavioural animal models of depression, the mouse forced swimming test (FST), the rat FST, the tail suspension test (TST), the chronic mild stress (CMS) model, the learned helplessness (LH) paradigm and a model based on neuronal deficit, the olfactory bulbectomy (OB), are discussed in this review. All these models present various symptoms of depression in animals suggested to resemble specific aspects of the human illness. Their use enables the investigation of the underlying neurobiology of depression, as well as the mechanism of action of antidepressants and the screening of potential antidepressants. It appears that the mouse FST is the most suitable animal of depression in predicting antidepressant response as it is easily and rapidly performed, robust, specific for antidepressant drugs and reproducible. Moreover, it permits a good correlation with clinical studies in a translational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anisman H, Suissa A, Sklar LS. Escape induced by uncontrollable stress: antagonism by dopamine and norepinephrine agonists. Behav Neural Biol. 1980;28(1):34–47.

    Article  CAS  Google Scholar 

  • Bourin M. Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam Clin Pharmacol. 1990;4(1):49–64.

    Article  CAS  Google Scholar 

  • Bourin M. New challenges for translational psychopharmacology. Front Psych. 2010;1:3.

    Google Scholar 

  • Bourin M, Baker GB. Do G proteins have a role in antidepressant action? Eur Neuropsychopharmacol. 1996;6(1):49–53.

    Article  CAS  Google Scholar 

  • Bourin M, Prica C. The role of mood stabilizers in treatment of the depressive facet of bipolar disorders. Neurosci Biobehav Rev. 2007;31:963–75.

    Article  CAS  Google Scholar 

  • Bourin M, Poncelet M, Chermat R, Simon P. The values of reserpine test in psychopharmacology. Arzneim Forsch. 1983;33(8):1173–6.

    CAS  Google Scholar 

  • Bourin M, Hascoët M, Colombel MC, Redrobe JP, Baker GB. Differential effects of clonidine, lithium and quinine in the forced swimming test in mice for antidepressants: possible roles of serotonergic system. Eur Neuropsychopharmacol. 1996a;6(3):231–6.

    Article  CAS  Google Scholar 

  • Bourin M, Redrobe JP, Hascoët M, Baker GB, Colombel MC. A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry. 1996b;20(8):1389–402.

    Article  CAS  Google Scholar 

  • Bourin M, Colombel MC, Redrobe JP, Nizard J, Hascoët M, Baker GB. Evaluation of efficacies of different classes of antidepressants in the forced swimming test in mice at different ages. Prog Neuropsychopharmacol Biol Psychiatry. 1998;22(2):343–51.

    Article  CAS  Google Scholar 

  • Bourin M, Chenu F, Ripoll N, David DJA. Proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res. 2005a;164(2):266–9.

    Article  CAS  Google Scholar 

  • Bourin M, Masse F, Hascoët M. Evidence for the activity of lamotrigine at 5-HT1A receptors in the mouse forced swimming test. J Psychiatry Neurosci. 2005b;30(4):275–82.

    PubMed  PubMed Central  Google Scholar 

  • Breslau N, Davis GC. Chronic stress and major depression. Arch Gen Psychiatry. 1986;43(4):309–14.

    Article  CAS  Google Scholar 

  • Cairncross KD, Wren A, Cox B, Schnieden H. Effects of olfactory bulbectomy and domicile on stress induced corticosterone release in the rat. Physiol Behav. 1977;119(4):485–7.

    Article  Google Scholar 

  • Carlezon WA Jr, Beguin C, DiNieri J, Baumann MH, Richards M, Todtenkopf MS, Rothman RB, Ma Z, Lee DY-L, Cohen BM. Depressive-like effects of the κ-opioid receptor agonist Salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther. 2006;314(1):440–7.

    Google Scholar 

  • Costa E, Garattini S, Valzelli L. Interaction between reserpine, chlorpromazine and imipramine. Experientia. 1960;16:461–3.

    Article  CAS  Google Scholar 

  • Cryan JF, Dalvi A, Jin SH, Hirsch BR, Lucki I, Thomas SA. Use of dopamine-beta-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther. 2001;298(2):651–7.

    CAS  PubMed  Google Scholar 

  • D’Aquila PS, Newton J, Willner P. Diurnal variation in the effect of chronic mild stress on sucrose intake and preference. Physiol Behav. 1997;62(2):421–6.

    Article  Google Scholar 

  • Darcet F, Gardier AM, Gaillard R, David DJ, Guilloux JP. Cognitive dysfunction in major depressive disorder. A translational review in animal models of the disease. Pharmaceuticals. 2016;9(1):9.

    Article  Google Scholar 

  • David DJ, Bourin M, Hascoët M, Colombel MC, Baker GB, Jolliet P. Comparison of antidepressant activity in 4- and 40-week old male mice in the forced swimming test: involvement of 5-HTA and 5-HT receptors in old mice. Psychopharmacology. 2001a;152(4):443–9.

    Article  Google Scholar 

  • David DJ, Nic Dhonnchadha BA, Jolliet P, Hascoët M, Bourin M. Are there gender differences in the temperature profile of mice after acute antidepressant administration and exposure to two animal models of depression? Behav Brain Res. 2001b;119(2):203–11.

    Article  CAS  Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoët M, Bourin M. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology. 2003;166(4):373–82.

    Article  CAS  Google Scholar 

  • Detke MJ, Johnson J, Lucki I. Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol. 1997;5(2):107–12.

    Article  CAS  Google Scholar 

  • Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry. 2003;54(10):994–1005.

    Article  CAS  Google Scholar 

  • Gardier AM, Trillat AC, Malagié I, David D, Hascoët M, Colombel MC, Jolliet P, Jacquot C, Hen R, Bourin M. Récepteurs 5-HT1B de la sérotonine et effets antidépresseurs des inhibiteurs de recapture sélectifs de la sérotonine. C R Acad Sci Paris Life. 2001;324(5):433–41.

    Article  CAS  Google Scholar 

  • Gorka Z, Moryl E, Papp M. Effect of chronic mild stress on circadian rhythms in the locomotor activity in rats. Pharmacol Biochem Behav. 1996;54(1):229–34.

    Article  CAS  Google Scholar 

  • Guo WY, Todd KG, Bourin M, Hascoët M. The additive effects of quinine on antidepressant drugs in the forced swimming test in mice. Psychopharmacology. 1995;121(2):173–9.

    Article  CAS  Google Scholar 

  • Guo W, Todd K, Bourin M, Hascoët M, Kouadio F. Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade. Pharmacol Biochem Behav. 1996;54(4):725–30.

    Article  CAS  Google Scholar 

  • Hascoët M, Bourin M, Bradwejn J. Behavioural models in mice, implication of the alpha noradrenergic system. Prog Neuropsychopharmacol Biol Psychiatry. 1991;15(6):825–40.

    Article  Google Scholar 

  • Hascoet M, Bourin M, Khimake S. Additive effect of lithium and clonidine with 5-HT1A agonists in the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry. 1994;18(2):381–96.

    Article  CAS  Google Scholar 

  • Holmes A, Yang RJ, Murphy DL, Crawley JN. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology. 2002;27(6):914–23.

    Article  CAS  Google Scholar 

  • Jesberger JA, Richardson JS. Animal models of depression: parallels and correlates to severe depression in humans. Biol Psychiatry. 1985;20(7):764–84.

    Article  CAS  Google Scholar 

  • Kuo CC, Lu L. Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurons. Br J Pharmacol. 1997;121(6):1231–8.

    Article  CAS  Google Scholar 

  • Leach MJ, Marden CM, Miller AA. Pharmacological studies of lamotrigine, a novel potential antipsychotic drug: neurochemical and clinical studies of the mechanism of action. Epilepsia. 1986;27(5):490–7.

    Article  CAS  Google Scholar 

  • Lizasoain I, Knowles RG, Moncada S. Inhibition by lamotrigine of the generation of nitric oxide in rat forebrain slices. J Neurochem. 1995;64(2):636–42.

    Article  CAS  Google Scholar 

  • Lucki I. The forced swimming test as a model for core and component behavioural effects of antidepressant drugs. Behav Pharmacol. 1997;8(6–7):523–32.

    Article  CAS  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology. 2001;155:315–22.

    Article  CAS  Google Scholar 

  • Machado-Viera R, Kapczinski F, Soares JC. Perspective for the development of animal models of bipolar disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(2):209–24.

    Article  Google Scholar 

  • Mague SM, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC, Jones RM, Portoghese PS, Carlezon WA Jr. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther. 2003;305(1):1–8.

    Article  Google Scholar 

  • Martin P, Soubrie P, Puech AJ. Reversal of helpless behaviour by serotonin uptake blockers in rats. Psychopharmacology. 1990;101(3):403–7.

    Article  CAS  Google Scholar 

  • Mayorga AJ, Lucki I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology. 2001;155(1):110–2.

    Article  CAS  Google Scholar 

  • Nixon M, Bourin MK, Hascoët M, Colombel MC. Additive effects of the lithium and antidepressants in the forced swimming test: further evidence for involvement of the serotonergic system. Psychopharmacology. 1994;115(1–2):59–64.

    Article  CAS  Google Scholar 

  • O’Donnell KC, Gould TD. The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev. 2007;31(6):932–62.

    Article  Google Scholar 

  • Pérez V, Gilaberte I, Faries D, Alvarez E, Artigas F. Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet. 1997;349(9065):1594–7.

    Article  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressants activity. Psychopharmacology. 2005;177(3):245–55.

    Article  CAS  Google Scholar 

  • Petty F, Sherman AD. Reversal of learned helplessness by imipramine. Commun Psychopharmacol. 1980;3(5):371–3.

    Google Scholar 

  • Porsolt RD. Animal models of depression: utility for transgenic research. Rev Neurosci. 2000;11(1):53–8.

    Article  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatment. Nature. 1977;266(5604):730–2.

    Article  CAS  Google Scholar 

  • Post RM, Weiss SR, Chuang DM. Mechanisms of action of anticonvulsants in affective disorders: comparisons with lithium. J Clin Psychopharmacol. 1992;12:23S–35S.

    Article  CAS  Google Scholar 

  • Prica C, Hascoët M, Bourin M. Antidepressant-like effect of lamotrigine is reversed by veratrin: a possible role of sodium channels in bipolar depression. Behav Brain Res. 2008;191(1):49–54.

    Article  CAS  Google Scholar 

  • Puech AJ, Chermat R, Poncelet M, Doaré L, Simon P. Antagonism of hypothermia and behavioural response to apomorphine: a simple, rapid and discriminating test for screening antidepressants and neuroleptics. Psychopharmacology. 1981;75(1):84–91.

    Article  CAS  Google Scholar 

  • Quinton RM. The increase of toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol Chemother. 1963;21:51–66.

    Article  CAS  Google Scholar 

  • Redrobe JP, Bourin M. Partial role of 5-HT2 and 5HT3 receptors in the activity of antidepressants in the mouse forced swimming test. Eur J Pharmacol. 1997;325(2–3):129–35.

    Article  CAS  Google Scholar 

  • Redrobe JP, Bourin M. Clonidine potentiates the effects of 5-HT1A, 5-HT1B and 5-HT2A/C antagonists and 8-0H-DPAT in the mouse forced swimming test. Eur Neuropsychopharmacol. 1998a;8:169–73.

    Article  CAS  Google Scholar 

  • Redrobe JP, Bourin M. Augmentation of antidepressant pharmacotherapy: a preclinical approach using the mouse forced swimming test. CNS Spectr. 1999a;4:73–81.

    Article  Google Scholar 

  • Redrobe JP, Bourin M. Evidence of the activity of lithium on the 5-HT1B receptors in the mouse forced swimming test: comparison with carbamazepine and sodium valproate. Psychopharmacology. 1999b;141(4):370–7.

    Article  CAS  Google Scholar 

  • Redrobe JP, Pinot P, Bourin M. The effect of the potassium channel activator, cromakalim, on antidepressant drugs in the forced swimming test in mice. Fundam Clin Pharmacol. 1996;10(6):524–8.

    Article  CAS  Google Scholar 

  • Redrobe JP, Bourin M, Colombel MC, Baker GB. Psychopharmacological profile of the selective serotonin reuptake inhibitor, paroxetine: implication of noradrenergic and serotonergic mechanisms. Psychopharmacology. 1998a;12(4):379–86.

    Google Scholar 

  • Remus JL, Dantzer R. Inflammation models of depression in rodents: relevance to psychotropic drug discovery. Int J Neuropsychopharmacol. 2016;19(9):pyw028.

    Article  Google Scholar 

  • Ripoll N, David DJP, Dailly E, Hascoët M, Bourin M. Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res. 2003;143(2):193–200.

    Article  CAS  Google Scholar 

  • Seligman ME, Rosellini RA, Kozak MJ. Learned helplessness in the rat: reversibility, time course and immunisation. J Comp Physiol Psychol. 1975;88(2):542–7.

    Article  CAS  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav. 1997;56(1):131–7.

    Article  CAS  Google Scholar 

  • Slattery DA, Hudson AL, Nutt DJ. Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol. 2004;18(1):1–21.

    Article  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 1985;85(3):367–70.

    Article  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Mico JA, Lenegre A, Steru M, Simon P, Porsolt R. The automated tail suspension test: a computerised device which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry. 1987;11(6):659–71.

    Article  CAS  Google Scholar 

  • Van Enkhuizen J, Geyer MA, Minassian A, Perry W, Henry BL, Young JW. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models: rodent and human studies. Neurosci Biobehav Rev. 2015;58:4–18.

    Article  Google Scholar 

  • Wang Q, Timberlake MA, Prall K, Dwivedi Y. The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2017;77:99–109.

    Article  Google Scholar 

  • Willner P. The validity of animal models of depression. Psychopharmacology. 1984;83(1):1–16.

    Article  CAS  Google Scholar 

  • Willner P, Papp M. Animal models to detect antidepressants: are new strategies necessary to detect new agent? In: Skolnick P, editor. Antidepressants: current trends and future directions. New York: The Humana Press Inc.; 1997.

    Google Scholar 

  • Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16(4):525–34.

    Article  CAS  Google Scholar 

  • Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov. 2002;3(2):136–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bourin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bourin, M. (2018). The Use of Animal Models in Defining Antidepressant Response: A Translational Approach. In: Kim, YK. (eds) Understanding Depression . Springer, Singapore. https://doi.org/10.1007/978-981-10-6580-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6580-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6579-8

  • Online ISBN: 978-981-10-6580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics