Skip to main content

Abstract

Ritalin or methylphenidate, is an amphetamine drug type that is typically prescribed to individuals with ADHD to ameliorate their symptomatology. In recent years, the use of Ritalin among healthy adults to enhance cognitive functioning has been raising concerns regarding substance abuse. Ritalin administration increases levels of dopamine and norepinephrine in the brain with the potential of augmenting cognitive functioning, especially attention and cognitive control. Besides individuals with ADHD, the cognitive enhancing effects of Ritalin have been studied in both sleep-deprived and non-sleep-deprived individuals. In contrast to the animal literature, findings in healthy humans are mixed. In this chapter, we review if and under which conditions the administration of Ritalin might enhance cognition in both non-sleep-deprived and sleep-deprived healthy adults. In non-sleep-deprived adults, Ritalin appears, to some extent, to increase working memory especially in challenging conditions, but not inhibitory control or attentional processes. In sleep-deprived adults, Ritalin seems to restore reduced attention and vigilance performance, but at the possible costs of subjective overconfidence. However, more research is required as only few studies have addressed this latter topic. Future research is also necessary to fully understand the effects that this drug exerts at long-term use. Also considering its abuse liability and side effects, Ritalin seems to be only a limited tool for enhancing cognition in healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Berridge, C. W., Devilbiss, D. M., Andrzejewski, M. E., Arnsten, A. F., Kelley, A. E., Schmeichel, B., et al. (2006). Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biological Psychiatry, 60(10), 1111–1120.

    Article  PubMed  Google Scholar 

  • Bishop, C., Roehrs, T., Rosenthal, L., & Roth, T. (1997). Alerting effects of methylphenidate under basal and sleep-deprived conditions. Experimental and Clinical Psychopharmacology, 5(4), 344–352.

    Article  PubMed  Google Scholar 

  • Bray, C. L., Cahill, K. S., Oshier, J. T., Peden, C. S., Theriaque, D. W., Flotte, T. R., et al. (2004). Methylphenidate does not improve cognitive function in healthy sleep-deprived young adults. Journal of Investigative Medicine, 52(3), 192–201.

    Article  PubMed  Google Scholar 

  • Caldú, X., Vendrell, P., Bartrés-Faz, D., Clemente, I., Bargalló, N., Jurado, M. Á., et al. (2007). Impact of the COMT Val 108/158 Met and DAT genotypes on prefrontal function in healthy subjects. Neuroimage, 37(4), 1437–1444.

    Article  PubMed  Google Scholar 

  • Camp-Bruno, J. A., & Herting, R. L. (1994). Cognitive effects of milacemide and methylphenidate in healthy young adults. Psychopharmacology (Berl), 115(1–2), 46–52.

    Article  PubMed  Google Scholar 

  • Chan, Y. P. M., Swanson, J. M., Soldin, S. S., Thiessen, J. J., Macleod, S. M., & Logan, W. (1983). Methylphenidate hydrochloride given with or before breakfast: II. Effects on plasma concentration of methylphenidate and ritalinic acid. Pediatrics, 72(1), 56–59.

    Article  PubMed  Google Scholar 

  • Colzato, L. S., & Hommel, B. (2014). Effects of estrogen on higher-order cognitive functions in unstressed human females may depend on individual variation in dopamine baseline levels. Frontiers in Neuroscience, 8, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colzato, L. S., Waszak, F., Nieuwenhuis, S., Posthuma, D., & Hommel, B. (2010). The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val 158 Met polymorphism: Evidence for a role of dopamine in the control of task-switching. Neuropsychologia, 48(9), 2764–2768.

    Article  PubMed  Google Scholar 

  • Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), 113–125.

    Article  Google Scholar 

  • Czoty, P. W., Riddick, N. V., Gage, H. D., Sandridge, M., Nader, S. H., Garg, S., et al. (2009). Effect of menstrual cycle phase on dopamine D2 receptor availability in female cynomolgus monkeys. Neuropsychopharmacology, 34, 548–554.

    Article  PubMed  Google Scholar 

  • Davis, C., Fattore, L., Kaplan, A. S., Carter, J. C., Levitan, R. D., & Kennedy, J. L. (2012). The suppression of appetite and food consumption by methylphenidate: The moderating effects of gender and weight status in healthy adults. International Journal of Neuropsychopharmacology, 15(2), 181–187.

    Article  PubMed  Google Scholar 

  • Faraone, S. V., Spencer, T., Aleardi, M., Pagano, C., & Biederman, J. (2004). Meta-analysis of the efficacy of methylphenidate for treating adult attention-deficit/hyperactivity disorder. Journal of Clinical Psychopharmacology, 24(1), 24–29.

    Article  PubMed  Google Scholar 

  • Gamo, N. J., Wang, M., & Arnsten, A. F. (2010). Methylphenidate and atomoxetine enhance prefrontal function through α 2-adrenergic and dopamine D 1 receptors. Journal of the American Academy of Child and Adolescent Psychiatry, 49(10), 1011–1023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs, E., & Esposito, M. D. (2011). Estrogen shapes dopamine-dependent cognitive processes: Implications for women’s health. Journal of Neuroscience, 31, 5286–5293.

    Article  PubMed  Google Scholar 

  • Jasinski, D. R. (2000). An evaluation of the abuse potential of Modafinil using methylphenidate as a reference. Journal of Psychopharmacology, 14(1), 53–60.

    Article  PubMed  Google Scholar 

  • Kimko, H. C., Cross, J. T., & Abernethy, D. R. (1999). Pharmacokinetics and clinical effectiveness of methylphenidate. Clinical Pharmacokinetics, 37(6), 457–470.

    Article  PubMed  Google Scholar 

  • Lakhan, S. E., & Kirchgessner, A. (2012). Prescription stimulants in individuals with and without attention deficit hyperactivity disorder: Misuse, cognitive impact, and adverse effects. Brain and Behavior, 2(5), 661–677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Linssen, A. M. W., Sambeth, A., Vuurman, E. F. P. M., & Riedel, W. J. (2014). Cognitive effects of methylphenidate in healthy volunteers: A review of single dose studies. International Journal of Neuropsychopharmacology, 17(6), 961–977.

    Article  PubMed  Google Scholar 

  • Linssen, A. M. W., Vuurman, E. F. P. M., Sambeth, A., & Riedel, W. J. (2012). Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers. Psychopharmacology (Berl), 221(4), 611–619.

    Article  PubMed  Google Scholar 

  • Low, K. G., & Gendaszek, A. E. (2002). Illicit use of psychostimulants among college students: A preliminary study. Psychology, Health & Medicine, 7, 283–287.

    Article  Google Scholar 

  • Manza, P., Hu, S., Ide, J. S., Farr, O. M., Zhang, S., Leung, H. C., et al. (2016). The effects of methylphenidate on cerebral responses to conflict anticipation and unsigned prediction error in a stop-signal task. Journal of Psychopharmacology, 30, 283–293.

    Article  PubMed  Google Scholar 

  • Mattay, V. S., Goldberg, T. E., Fera, F., Hariri, A. R., Tessitore, A., Egan, M. F., et al. (2003). Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences, 100(10), 6186–6191.

    Article  Google Scholar 

  • McCabe, S. E., Knight, J. R., Teter, C. J., & Wechsler, H. (2005). Non-medical use of prescription stimulants among US college students: Prevalence and correlates from a national survey. Addiction, 100(1), 96–106.

    Article  PubMed  Google Scholar 

  • Mészáros, Á., Czobor, P., Bálint, S., Komlósi, S., Simon, V., & Bitter, I. (2009). Pharmacotherapy of adult attention deficit hyperactivity disorder (ADHD): A meta-analysis. The International Journal of Neuropsychopharmacology, 12(8), 1137–1147.

    Article  PubMed  Google Scholar 

  • Moore, R. Y., & Bloom, F. E. (1978). Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems. Annual Review of Neuroscience, 1(1), 129–169.

    Article  PubMed  Google Scholar 

  • Morton, W. A., & Stockton, G. G. (2000). Methylphenidate abuse and psychiatric side effects. Primary Care Companion to the Journal of Clinical Psychiatry, 2, 159–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Novartis (2016). Ritalin LA ® prescribing information. Retrieved from: https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/ritalin_la.pdf

  • Pardridge, W. M., & Connor, J. D. (1973). Saturable transport of amphetamine across the blood–brain barrier. Cellular and Molecular Life Sciences, 29(3), 302–304.

    Article  Google Scholar 

  • Rabiner, D. L., Anastopoulos, A. D., Costello, E. J., Hoyle, R. H., McCabe, S. E., & Swartzwelder, H. S. (2009). Motives and perceived consequences of nonmedical ADHD medication use by college students are students treating themselves for attention problems? Journal of Attention Disorders, 13(3), 259–270.

    Article  PubMed  Google Scholar 

  • Rappley, M. D. (1997). Safety issues in the use of methylphenidate. Drug Safety, 17, 143–148.

    Article  PubMed  Google Scholar 

  • Rapport, M. D., & Moffitt, C. (2002). Attention deficit/hyperactivity disorder and methylphenidate: A review of height/weight, cardiovascular, and somatic complaint side effects. Clinical Psychology Review, 22(8), 1107–1131.

    Article  PubMed  Google Scholar 

  • Repantis, D., Schlattmann, P., Laisney, O., & Heuser, I. (2010). Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research, 62, 187–206.

    Article  PubMed  Google Scholar 

  • Schachar, R., Ickowicz, A., Crosbie, J., Donnelly, G. A., Reiz, J. L., Miceli, P. C., … Darke, A. C. (2008). Cognitive and behavioral effects of multilayer-release methylphenidate in the treatment of children with attention-deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 18(1), 11–24.

    Google Scholar 

  • Spencer, R. C., Devilbiss, D. M., & Berridge, C. W. (2015). The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex. Biological Psychiatry, 77(11), 940–950.

    Article  PubMed  Google Scholar 

  • Studer, P., Wangler, S., Diruf, M., Kratz, O., Moll, G., & Heinrich, H. (2010). ERP effects of methylphenidate and working memory load in healthy adults during a serial visual working memory task. Neuroscience Letters, 482(2), 172–176.

    Article  PubMed  Google Scholar 

  • Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology, 75(6), 406–433.

    Article  PubMed  Google Scholar 

  • Volkow, N. D., Fowler, J. S., Wang, G. J., Ding, Y. S., & Gatley, S. J. (2002a). Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: Results from imaging studies. European Neuropsychopharmacology, 12(6), 557–566.

    Article  PubMed  Google Scholar 

  • Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y., & Gatley, S. J. (2002b). Mechanism of action of methylphenidate: Insights from PET imaging studies. Journal of Attention Disorders, 6, 31–44.

    Article  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y. S., et al. (1998). Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. American Journal of Psychiatry, 155(10), 1325–1331.

    Article  PubMed  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Wong, C., et al. (1999). Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D2 receptors. Journal of Pharmacology and Experimental Therapeutics, 291(1), 409–415.

    PubMed  Google Scholar 

  • Volkow, N. D., Wang, G., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., et al. (2001). Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. The Journal of Neuroscience, 21(2), 1–5.

    Article  Google Scholar 

  • Wetzel, C. D., Squire, L. R., & Janowsky, D. S. (1981). Methylphenidate impairs learning and memory in normal adults. Behavioral and Neural Biology, 31(4), 413–424.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza S. Colzato .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Colzato, L.S., Arntz, F.E. (2017). Ritalin. In: Theory-Driven Approaches to Cognitive Enhancement. Springer, Cham. https://doi.org/10.1007/978-3-319-57505-6_6

Download citation

Publish with us

Policies and ethics