Skip to main content
Log in

Randomized estimation of spectral densities of large matrices made accurate

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

For a large Hermitian matrix \(A\in \mathbb {C}^{N\times N}\), it is often the case that the only affordable operation is matrix–vector multiplication. In such case, randomized method is a powerful way to estimate the spectral density (or density of states) of A. However, randomized methods developed so far for estimating spectral densities only extract information from different random vectors independently, and the accuracy is therefore inherently limited to \(\mathcal {O}(1/\sqrt{N_{v}})\) where \(N_{v}\) is the number of random vectors. In this paper we demonstrate that the “\(\mathcal {O}(1/\sqrt{N_{v}})\) barrier” can be overcome by taking advantage of the correlated information of random vectors when properly filtered by polynomials of A. Our method uses the fact that the estimation of the spectral density essentially requires the computation of the trace of a series of matrix functions that are numerically low rank. By repeatedly applying A to the same set of random vectors and taking different linear combination of the results, we can sweep through the entire spectrum of A by building such low rank decomposition at different parts of the spectrum. Under some assumptions, we demonstrate that a robust and efficient implementation of such spectrum sweeping method can compute the spectral density accurately with \(\mathcal {O}(N^2)\) computational cost and \(\mathcal {O}(N)\) memory cost. Numerical results indicate that the new method can significantly outperform existing randomized methods in terms of accuracy. As an application, we demonstrate a way to accurately compute a trace of a smooth matrix function, by carefully balancing the smoothness of the integrand and the regularized density of states using a deconvolution procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schwartz, L.: Mathematics for the Physical Sciences. Dover, New York (1966)

    MATH  Google Scholar 

  2. Byron, F.W., Fuller, R.W.: Mathematics of Classical and Quantum Physics. Dover, New York (1992)

    MATH  Google Scholar 

  3. Richtmyer, R.D., Beiglböck, W.: Principles of Advanced Mathematical Physics, vol. 1. Springer, New York (1981)

    Book  MATH  Google Scholar 

  4. Ducastelle, F., Cyrot-Lackmann, F.: Moments developments and their application to the electronic charge distribution of d bands. J. Phys. Chem. Solids 31, 1295–1306 (1970)

    Article  Google Scholar 

  5. Turek, I.: A maximum-entropy approach to the density of states within the recursion method. J. Phys. C 21, 3251 (1988)

    Article  Google Scholar 

  6. Drabold, D.A., Sankey, O.F.: Maximum entropy approach for linear scaling in the electronic structure problem. Phys. Rev. Lett. 70, 3631–3634 (1993)

    Article  Google Scholar 

  7. Wheeler, J.C., Blumstein, C.: Modified moments for harmonic solids. Phys. Rev. B 6, 4380–4382 (1972)

    Article  Google Scholar 

  8. Silver, R.N., Röder, H.: Densities of states of mega-dimensional Hamiltonian matrices. Int. J. Mod. Phys. C 5, 735–753 (1994)

    Article  Google Scholar 

  9. Wang, L.-W.: Calculating the density of states and optical-absorption spectra of large quantum systems by the plane-wave moments method. Phys. Rev. B 49, 10154 (1994)

    Article  Google Scholar 

  10. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78, 275–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Covaci, L., Peeters, F.M., Berciu, M.: Efficient numerical approach to inhomogeneous superconductivity: the Chebyshev-Bogoliubov–de Gennes method. Phys. Rev. Lett. 105, 167006 (2010)

    Article  Google Scholar 

  12. Jung, D., Czycholl, G., Kettemann, S.: Finite size scaling of the typical density of states of disordered systems within the kernel polynomial method. Int. J. Mod. Phys. Conf. Ser. 11, 108 (2012)

    Article  Google Scholar 

  13. Seiser, B., Pettifor, D.G., Drautz, R.: Analytic bond-order potential expansion of recursion-based methods. Phys. Rev. B 87, 094105 (2013)

    Article  Google Scholar 

  14. Haydock, R., Heine, V., Kelly, M.J.: Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C: Solid State Phys. 5, 2845 (1972)

    Article  Google Scholar 

  15. Parker, G.A., Zhu, W., Huang, Y., Hoffman, D., Kouri, D.J.: Matrix pseudo-spectroscopy: iterative calculation of matrix eigenvalues and eigenvectors of large matrices using a polynomial expansion of the Dirac delta function. Comput. Phys. Commun. 96, 27–35 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hackbusch, W.: A sparse matrix arithmetic based on \({\cal H}\)-matrices. Part I: Introduction to \({\cal H}\)-matrices. Computing 62, 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès, E., Demanet, L., Ying, L.: A fast butterfly algorithm for the computation of fourier integral operators. SIAM Multiscale Model. Simul. 7(4), 1727–1750 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices. SIAM Rev. 58, 34 (2016)

  21. Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58, 8 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parlett, B.N.: The Symmetric Eigenvalue Problem, vol. 7. SIAM, Englewood Cliffs (1980)

    MATH  Google Scholar 

  23. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112–115117 (2009)

    Article  Google Scholar 

  25. Schofield, G., Chelikowsky, J.R., Saad, Y.: A spectrum slicing method for the Kohn–Sham problem. Comput. Phys. Commun. 183, 497–505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fang, H.-R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aktulga, H.M., Lin, L., Haine, C., Ng, E.G., Yang, C.: Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method. Parallel Comput. 40, 195–212 (2014)

    Article  MathSciNet  Google Scholar 

  28. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  30. Liberty, E., Woolfe, F., Martinsson, P., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci. USA 104, 20167–20172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25(3), 335–366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1 (2011)

    MathSciNet  Google Scholar 

  34. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Scientific Discovery through Advanced Computing (SciDAC) program and the Center for Applied Mathematics for Energy Research Applications (CAMERA) funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, and by the Alfred P. Sloan fellowship. We thank the anonymous referees for their comments that greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L. Randomized estimation of spectral densities of large matrices made accurate. Numer. Math. 136, 183–213 (2017). https://doi.org/10.1007/s00211-016-0837-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0837-7

Mathematics Subject Classification

Navigation