Skip to main content
Log in

Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Deckelnick and Dziuk (Math. Comput. 78(266):645–671, 2009) proved a stability bound for a continuous-in-time semidiscrete parametric finite element approximation of the elastic flow of closed curves in \({\mathbb{R}^d, d\geq2}\) . We extend these ideas in considering an alternative finite element approximation of the same flow that retains some of the features of the formulations in Barrett et al. (J Comput Phys 222(1): 441–462, 2007; SIAM J Sci Comput 31(1):225–253, 2008; IMA J Numer Anal 30(1):4–60, 2010), in particular an equidistribution mesh property. For this new approximation, we obtain also a stability bound for a continuous-in-time semidiscrete scheme. Apart from the isotropic situation, we also consider the case of an anisotropic elastic energy. In addition to the evolution of closed curves, we also consider the isotropic and anisotropic elastic flow of a single open curve in the plane and in higher codimension that satisfies various boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett J.W., Garcke H., Nürnberg R.: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comput. 29(3), 1006–1041 (2007). doi:10.1137/060653974

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett J.W., Garcke H., Nürnberg R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–462 (2007). doi:10.1016/j.jcp.2006.07.026

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett J.W., Garcke H., Nürnberg R.: Numerical approximation of anisotropic geometric evolution equations in the plane. IMA J. Numer. Anal. 28(2), 292–330 (2008). doi:10.1093/imanum/drm013

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett J.W., Garcke H., Nürnberg R.: Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31(1), 225–253 (2008). doi:10.1137/070700231

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett J.W., Garcke H., Nürnberg R.: A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109(1), 1–44 (2008). doi:10.1007/s00211-007-0135-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrett J.W., Garcke H., Nürnberg R.: Numerical approximation of gradient flows for closed curves in \({{\mathbb R}^d}\). IMA J. Numer. Anal. 30(1), 4–60 (2010). doi:10.1093/imanum/drp005

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrett J.W., Garcke H., Nürnberg R.: The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute. Numer. Methods Partial Differ. Equ. 27(1), 1–30 (2011). doi:10.1002/num.20637

    Article  MATH  Google Scholar 

  8. Barrett, J.W., Garcke, H., Nürnberg, R.: Elastic flow with junctions: Variational approximation and applications to nonlinear splines (2011). Preprint No. 30/2011, University Regensburg, Germany

  9. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of geodesic gradient flows: stability, embeddedness and equidistribution (2011, in preparation)

  10. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of Willmore flow for closed and open surfaces (2011, in preparation)

  11. Barrett, R., Berry, M., Chan, T.F., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994)

  12. Chai Y.D., Kim M.: On a generalization of Fenchel’s theorem. Commun. Korean Math. Soc. 15(1), 103–109 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Davis T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004). doi:10.1145/992200.992206

    Article  MATH  Google Scholar 

  14. Davis, T.A.: Algorithm 915 SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Software 38(1) (2011, to appear)

  15. Deckelnick K., Dziuk G.: Error analysis for the elastic flow of parametrized curves. Math. Comput. 78(266), 645–671 (2009). doi:10.1090/S0025-5718-08-02176-5

    MathSciNet  MATH  Google Scholar 

  16. Deckelnick K., Dziuk G., Elliott C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). doi:10.1017/S0962492904000224

    Article  MathSciNet  MATH  Google Scholar 

  17. Deckelnick K., Grunau H.C.: Boundary value problems for the one-dimensional Willmore equation. Calc. Var. Partial Differ. Equ. 30(3), 293–314 (2007). doi:10.1007/s00526-007-0089-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Deckelnick K., Grunau H.C.: Stability and symmetry in the Navier problem for the one-dimensional Willmore equation. SIAM J. Math. Anal. 40(5), 2055–2076 (2009). doi:10.1137/07069033X

    Article  MathSciNet  MATH  Google Scholar 

  19. Dziuk G.: Computational parametric Willmore flow. Numer. Math. 111(1), 55–80 (2008). doi:10.1007/s00211-008-0179-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Dziuk G., Kuwert E., Schätzle R.: Evolution of elastic curves in \({{\mathbb R}^n}\): existence and computation. SIAM J. Math. Anal. 33, 1228–1245 (2002). doi:10.1137/S0036141001383709

    Article  MathSciNet  MATH  Google Scholar 

  21. Euler, L.: Opera Omnia, Ser. 1, 24. Orell Füssli, Zurich (1952)

  22. Fenchel W.: Über Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101(1), 238–252 (1929). doi:10.1007/BF01454836

    Article  MathSciNet  MATH  Google Scholar 

  23. Fonseca I., Müller S.: A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119(1–2), 125–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Garrivier D., Fourcade B.: Twisting DNA with variable intrinsic curvature. Europhys. Lett. 49(3), 390–395 (2000). doi:10.1209/epl/i2000-00161-8

    Article  Google Scholar 

  25. Giga Y.: Surface Evolution Equations. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  26. Goyal S., Perkins N.C., Lee C.L.: Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables. J. Comput. Phys. 209(1), 371–389 (2005). doi:10.1016/j.jcp.2005.03.027

    Article  MathSciNet  MATH  Google Scholar 

  27. Gurtin M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1993)

    Google Scholar 

  28. Lin C.C., Schwetlick H.R.: On the geometric flow of Kirchhoff elastic rods. SIAM J. Appl. Math. 65(2), 720–736 (2004). doi:10.1137/S0036139903431713

    Article  MathSciNet  Google Scholar 

  29. Linnér A.: Explicit elastic curves. Ann. Global Anal. Geom. 16(5), 445–475 (1998). doi:10.1023/A:1006526817291

    Article  MathSciNet  MATH  Google Scholar 

  30. Mio W., Srivastava A., Klassen E.: Interpolations with elasticae in Euclidean spaces. Quart. Appl. Math. 62(2), 359–378 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Polden, A.: Curves and surfaces of least total curvature and fourth-order flows. Ph.D. thesis, University Tübingen, Tübingen (1996)

  32. Pozzi P.: Anisotropic curve shortening flow in higher codimension. Math. Methods Appl. Sci. 30(11), 1243–1281 (2007). doi:10.1002/mma.836

    Article  MathSciNet  MATH  Google Scholar 

  33. Schätzle R.: The Willmore boundary problem. Calc. Var. Partial Differ. Equ. 37(3-4), 275–302 (2010). doi:10.1007/s00526-009-0244-3

    Article  MATH  Google Scholar 

  34. Soner H.M.: Motion of a set by the curvature of its boundary. J. Differ. Equ. 101(2), 313–372 (1993). doi:10.1006/jdeq.1993.1015

    Article  MathSciNet  MATH  Google Scholar 

  35. Swigon, D.: The mathematics of DNA structure, mechanics, and dynamics. In: Benham, C.J., Harvey, S., Olson, W.K., Sumners, D.W.L., Swigon, D. (eds.) Mathematics of DNA Structure, Function and Interactions, IMA Vol. Math. Appl., vol. 150, pp. 293–320. Springer, New York (2009). doi:10.1007/978-1-4419-0670-0_14

  36. Tröltzsch, F.: Optimal control of partial differential equations: theory, methods and applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)

  37. Truesdell C.: The influence of elasticity on analysis: the classic heritage. Bull. Amer. Math. Soc. (N.S.) 9(3), 293–310 (1983). doi:10.1090/S0273-0979-1983-15187-X

    Article  MathSciNet  MATH  Google Scholar 

  38. Tu Z., Ou-Yang Z.: Elastic theory of low-dimensional continua and its applications in bio- and nano-structures. J. Comput. Theor. Nanosci. 5(4), 422–448 (2008)

    Google Scholar 

  39. Wulff G.: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Z. Krist. 34, 449–530 (1901)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Nürnberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, J.W., Garcke, H. & Nürnberg, R. Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves. Numer. Math. 120, 489–542 (2012). https://doi.org/10.1007/s00211-011-0416-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0416-x

Mathematics Subject Classification (2000)

Navigation