Skip to main content
Log in

Convergence rate analysis of a derivative free landweber iteration for parameter identification in certain elliptic PDEs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the nonlinear inverse problem of identifying a parameter from knowledge of the physical state in an elliptic partial differential equation. For a derivative free Landweber method, convergence rates are proven under a weak source condition not involving the standard Fréchet derivative of the nonlinear parameter-to-output map. This source condition is discussed both for the estimation of state- and space-dependent parameters in higher dimensions. Finally, numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakushinskii, A.B.: The problem of the convergence of the iteratively regularized Gauss-Newton method. Comput. Math. Phys. 32, 1353–1359 (1992)

    Google Scholar 

  2. Bakushinsky, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Kluwer Academic Publishers, 1994

  3. Blaschke, B., Neubauer, A., Scherzer, O.: On convergence rates for the iteratively regularized Gauss-Newton method. IMA Journal of Numerical Analysis 17, 421–436 (1997)

    Google Scholar 

  4. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer Academic Publishers, 1996

  5. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Problems 5, 523–540 (1989)

    Google Scholar 

  6. Engl, H.W., Kügler, P.: The influence of the equation type on iterative parameter identification problems which are elliptic or hyperbolic in the parameter. European Journal of Applied Mathematics 14, 129–163 (2003)

    Google Scholar 

  7. Engl, H.W., Scherzer, O.: Convergence rate results for iterative methods for solving nonlinear ill-posed problems. In: D. Colton, H.W. Engl, A.K. Louis, J. McLaughlin, W.F. Rundell (eds.), Survey on Solution Methods for Inverse Problems, Springer, Vienna/New York, 2000, pp. 7–34

  8. Engl, H.W., Zou, J.: A new approach to convergence rate analysis of Tiknonov regularization for parameter identification in heat conduction. Inverse Problems 16, 1907–1923 (2000)

    Google Scholar 

  9. Evans, L.C., Gariepy, R.: Measure theory and fine properties of functions, CRC Press, 1992

  10. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numerische Mathematik 72, 21–37 (1995)

    Google Scholar 

  11. Kaltenbacher, B., Kaltenbacher, M., Reitzinger, S.: Identification of nonlinear B-H curves based on magnetic field computations and multigrid methods for ill-posed problems. SFB-Report 17 (2001), SFB F013, Austria

  12. Kunisch, K., Ring, W.: Regularization of nonlinear illposed problems with closed operators. Numer. Funct. Anal. and Optimiz. 14, 389–404 (1993)

    Google Scholar 

  13. Kügler, P.: A derivative-free Landweber iteration for parameter identification in certain elliptic PDEs. Inverse Problems 19, 1407–1426 (2003)

    Google Scholar 

  14. Kügler, P.: A derivative free landweber method for parameter identification in elliptic partial differential equations with application to the manufacture of car windshields. PhD Thesis, Johannes Kepler University, Linz, Austria, 2003

  15. Kügler, P.: A parameter identification problem of mixed type related to the manufacture of car windshields. SIAM J. Appl. Math. 64, 858–877 (2004)

    Google Scholar 

  16. Kügler, P., Engl, H.W.: Identification of a temperature dependent heat conductivity by Tikhonov regularization. Journal of Inverse and Ill-posed Problems 10, 67–90 (2002)

    Google Scholar 

  17. Lions, J.L., Magenes, E.: Non-Homogenuous Boundary Value Problems and Applications Vol. I, Springer, Berlin, Heidelberg, New York, 1972

  18. Morozov, A.: Regularization Methods for Ill-Posed Problems, CRC Press, 1993

  19. Neubauer, A.: On Landweber iteration for nonlinear ill-posed problems in Hilbert scales. Numerische Mathematik 85, 309–328 (2000)

    Google Scholar 

  20. Pechstein, C.: Multigrid-Newton-Methods for nonlinear magnetostatic problems. Diploma Thesis, Johannes Kepler University, Linz, Austria, 2004

  21. Scherzer, O.: A modified Landweber iteration for solving parameter estimation problems. Applied Mathematics and Optimization 38, 45–68 (1998)

    Google Scholar 

  22. Scherzer, O.: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems. J. Math. Anal. Appl. 194, 911–933 (1995)

    Google Scholar 

  23. Scherzer, O., Engl, H.W., Anderssen, R.S.: Parameter identification from boundary measurements in a parabolic equation arising from geophysics. Nonlinear Anal. 20, 127–156 (1993)

    Google Scholar 

  24. Schock, E.: Approximate solution of ill-posed equations: arbitrarily slow convergence vs. superconvergence. In: G. Hämmerlin and K.H. Hoffmann, (eds.), Construcitve Methods for the Practical Treatment of Integral Equations, Birkhäuser, Basel, 1985, pp. 234–243

  25. Zeidler, E.: Nonlinear functional analysis and its applications II/b. Springer-Verlag, New York, Berlin, Heidelberg, 1980

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Kügler.

Additional information

This work was supported by the Austrian National Science Foundation FWF under grant SFB F013 project F1308.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kügler, P. Convergence rate analysis of a derivative free landweber iteration for parameter identification in certain elliptic PDEs. Numer. Math. 101, 165–184 (2005). https://doi.org/10.1007/s00211-005-0609-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0609-2

Mathematics Subject Classification (2000)

Navigation