Skip to main content
Log in

Modulation of GPCRs by monovalent cations and anions

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The recent resolution of G-protein-coupled receptor (GPCR) structures in complex with Na+ bound to an allosteric modulatory site has renewed interest of the regulation of GPCRs by ions. Here, we summarise key data on ion modulation of GPCRs, obtained in pharmacological, crystallographic, mutagenesis and molecular modelling studies. We show that ion modulation is a highly complex process, involving not only cations but also, rather neglected until now, anions. Pharmacotherapeutic and toxicological aspects are discussed. We provide a mathematical framework for the analysis of ion effects. Finally, we discuss open questions in the field and future research directions. Most importantly, the in vivo relevance of the modulation of GPCR function by monovalent ions must be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baird-Heinz HE, Van Schoick AL, Pelsor FR, Ranivand L, Hungerford LL (2012) A systematic review of the safety of potassium bromide in dogs. J Am Vet Med Assoc 240:705–715

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu J-M, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  • Brunskole I, Strasser A, Seifert R, Buschauer A (2011) Role of the second and third extracellular loops of the histamine H4 receptor in receptor activation. Naunyn Schmiedeberg’s Arch Pharmacol 384:301–317

    Article  CAS  Google Scholar 

  • Ceresa BP, Limbird LE (1994) Mutation of an aspartate residue highly conserved among G-protein-coupled receptors results in nonreciprocal disruption of α2-adrenergic receptor-G-protein interactions. J Biol Chem 269:29557–29564

    CAS  PubMed  Google Scholar 

  • Cetani F, Tonacchera M, Vassart G (1996) Differential effects on NaCl concentration on the constitutive activity of the thyrotropin and the luteinizing hormone/chorionic gonadotropin receptors. FEBS Lett 378:27–31

    Article  CAS  PubMed  Google Scholar 

  • Chang RS, Synder SH (1980) Histamine H1-receptor binding sites in guinea pig brain membranes: regulation of agonist interactions by guanine nucleotides and cations. J Neurochem 34:916–922

    Article  CAS  PubMed  Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with D2/D3 selective antagonist. Science 330:1019–1095

    Article  Google Scholar 

  • Collins KD, Neilson GW, Endergy JE (2007) Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys Chem 128:95–104

    Article  CAS  PubMed  Google Scholar 

  • Connolly TM, Limbird LE (1983) The influence of Na+ on the alpha 2-adrenergic receptor system of human platelets. A method for removal of extraplatelet Na+. Effect of Na+ removal on aggregation, secretion, and cAMP accumulations. J Biol Chem 258:3907–3912

    CAS  PubMed  Google Scholar 

  • Coppini R, Ferrantini C, Mazzoni L, Sartiani L, Olivotto I, Poggesi C, Carbai E, Mugelli A (2013) Regulation of intracellular Na+ in health and disease: pathophysiological mechanism and implications for treatment. Glob Cardio / Sci Pract 3:222–242

    Google Scholar 

  • Costa T, Lang J, Gless C, Herz A (1990) Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium ions. Mol Pharmacol 37:383–394

    CAS  PubMed  Google Scholar 

  • Ericksen SS, Cummings DF, Weinstein H, Schetz JA (2009) Ligand selectivity of D2 dopamine receptors is modulated by changes in local dynamics produced by sodium binding. J Pharmacol Exp Ther 328:40–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fenalti G, Giguere PM, Katritch V, Huang X-P, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of δ-opioid receptor signaling. Nature 506:191–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forlenza OV, De-Paula VJR, Diniz BSO (2014) Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci 5:443–450

    Article  CAS  Google Scholar 

  • Friedman R (2011) Ions and the protein surface revisited: extensive molecular dynamic simulations and analysis of protein structures in alkali-chloride solutions. J Phys Chem B 115:921–9223

    Article  Google Scholar 

  • Gibson WJ, Roques TW, Young JM (1994) Modulation of antagonist binding to histamine H1-receptors by sodium ions and by 2-amino-2-hydroxmethyl-propan-1,3-diol HCl. Br J Pharmacol 111:1262–1268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gierschik P, Sidiropoulos D, Steisslinger M, Jakobs KH (1989) Na+ regulation of formyl peptide receptor-mediated signal transduction in HL60 cells. Evidence that the cation prevents activation of the G-protein by unoccupied receptors. Eur J Pharmacol (Mol Pharmacol) 172:481–492

    Article  CAS  Google Scholar 

  • Gierschik P, Moghtader R, Straub C, Dieterich K, Jakobs KH (1991) Signal amplification in HL-60 granulocytes: evidence that the chemotactic peptide receptor catalytically activates guanine-nucleotide-binding regulatory proteins in native plasma membranes. Eur J Biochem 197:725–732

    Article  CAS  PubMed  Google Scholar 

  • Grandjean EM, Aubry JM (2009) Lithium: updated human knowledge using an evidence-based approach. Part II: clinical pharmacology and therapeutic monitoring. CNS Drugs 23:331–349

    Article  CAS  PubMed  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC (1987) Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem 262:3597–3602

    CAS  PubMed  Google Scholar 

  • Hofmeister F (1888) Zur Lehre der Wirkung der Salze. Arch Exp Pathol Pharmakol (Leipzig) 24:247–260

    Article  Google Scholar 

  • James LP, Farrar HC, Griebel ML, Bates SR (1997) Bromism: intoxication from a rare anticonvulsant therapy. Pediatr Emerg Care 13:268–270

    Article  CAS  PubMed  Google Scholar 

  • Joung IS, Cheatham EE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signalling. Trends Biochem Sci 39:233–244

    Article  CAS  PubMed  Google Scholar 

  • Kleemann P, Papa D, Vigil-Cruzs, Seifert R (2008) Functional reconstitution of the human chemokine receptor CXCR4 with Gi/Go-proteins in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 378:261–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krautwurst D, Seifert R, Hescheler J, Schultz G (1992) Formyl peptides and ATP stimulate Ca2+ and Na+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca2+ and Na+ in the activation of beta-glucuronidase release and superoxide production. Biochem J 288(Pt 3):1025–1035

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14:303–307

    Article  CAS  PubMed  Google Scholar 

  • Limbird LE, Speck JL, Smith SK (1982) Sodium ion modulates agonist and antagonist interaction with the human platelet alpha 2-adrenergic receptor in membrane and solubilized preparations. Mol Pharmacol 21:609–617

    CAS  PubMed  Google Scholar 

  • Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Ijzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112:2286–2322

    Article  CAS  PubMed  Google Scholar 

  • Lombardo F, Maggini M, Gruden G, Bruno G (2013) Temporal trend in hospitalizations for acute diabetic complications: a nationwide study, Italy 2001–2010. PLoS One 8:e63675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mähler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438

    Article  PubMed Central  PubMed  Google Scholar 

  • Marlinge E, Bellivier F, Houenou J (2014) White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 16:97–112

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Botto JM, Vincent JP, Mazella J (1999) Pivotal role of an aspartate residue in sodium sensitivity and coupling to G proteins of neurotensin receptor. Mol Pharmacol 55:210–215

    CAS  PubMed  Google Scholar 

  • May M, Jordan J (2011) The osmopressor response to water drinking. Am J Physiol Regul Integr Comp Physiol 300:R40–R46

    Article  CAS  PubMed  Google Scholar 

  • Miller-Gallacher JL, Nehme R, Warne T, Edwards PC, Schertler GFX, Leslie AGW, Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS ONE 9:e92727

    Article  PubMed Central  PubMed  Google Scholar 

  • Motulsky HJ, Insel PA (1983) Influence of sodium on the alpha 2-adrenergic receptor system of human platelets. Role for intraplatelet sodium in receptor binding. J Biol Chem 258:3913–3919

    CAS  PubMed  Google Scholar 

  • Neve K (1991) Regulation of dopamine D2 receptors by sodium and pH. Mol Pharmacol 39:570–578

    CAS  PubMed  Google Scholar 

  • Neve KA, Cox BA, Henningsen RA, Spanoyannis A, Neve RL (1991) Pivotial role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase. Mol Pharmacol 39:733–739

    CAS  PubMed  Google Scholar 

  • Nickl K, Gardner EE, Geiger S, Heilmann J, Seifert R (2008) Differential coupling of the human cannabinoid receptors hCB1R and hCB2R to the G protein Gαi2Gβ1γ2. Neurosci Lett 447:68–72

    Article  CAS  PubMed  Google Scholar 

  • Pacheco MA, Ward SJ, Childers SR (1994) Differential requirements of sodium for coupling of cannabinoid receptors to adenylyl cyclase in rat brain membranes. J Neurochem 62:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Pop N, Igel P, Brennauer A, Cabrele C, Bernhardt GN, Seifert R, Buschauer A (2011) Functional reconstitution of human neuropeptide Y (NPY) Y2 and Y4 receptors in Sf9 insect cells. J Recept Signal Transduct Res 31:271–285

    Article  CAS  PubMed  Google Scholar 

  • Rembert KB, Paterova J, Heyda J, Hilty C, Jungwirth P, Cremer PS (2012) Molecular mechanism of ion-specific effects on proteins. J Am Chem Soc 134:10039–10046

    Article  CAS  PubMed  Google Scholar 

  • Schetz JA (2005) Allosteric modulation of dopamine receptor. Mini Rev Med Chem 5:555–561

    Article  CAS  PubMed  Google Scholar 

  • Schetz JA, Sibley DR (2001) The binding-site crevice of the D4 dopamine receptor is coupled to three distinct sites of allosteric modulation. J Pharmacol Exp Ther 296:359–363

    CAS  PubMed  Google Scholar 

  • Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H4-receptor. Biochemistry 48:1424–1438

    Article  CAS  PubMed  Google Scholar 

  • Schnell D, Seifert R (2010) Modulation of histamine H3 receptor function by monovalent ions. Neurosci Lett 472:114–118

    Article  CAS  PubMed  Google Scholar 

  • Seifert R (2001) Monovalent anions differentially modulate coupling of the β2-adrenoceptor to Gsα splice variants. J Pharmacol Exp Ther 298:840–847

    CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2001) Unmasking different constitutive activity of four chemoattractant receptors using Na+ as universal stabilizer of the inactive (R) state. Receptors Channels 7:357–369

    CAS  PubMed  Google Scholar 

  • Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild type receptors. Naunyn Schmiedeberg’s Arch Pharmacol 366:381–416

    Article  CAS  Google Scholar 

  • Selent J, Sanz F, Pastor M, De Fabritiis G (2010) Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLOS Comput Chem 6:e10000884

    Google Scholar 

  • Selley DE, Cao C-C, Liu Q, Childers SR (2000) Effects of sodium on agonist efficacy for G-protein activation in μ-opioid receptor-transfected CHO cells and rat thalamus. Br J Pharmacol 130:987–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shang Y, LeRouzic V, Schneider S, Bisignano P, Pasternak GW, Filizola M (2014) Mechanistic insight into the allosteric modulation of opioid receptors by sodium ions. Biochemistry 53:5140–5149

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Graeme W, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayahi T, Stevens RS, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simon Bulley SB, Jaggar JH (2014) Cl channels in smooth muscle cells. Pflugers Arch 466:861–872

    Article  PubMed  Google Scholar 

  • Soper AK, Weckström K (2006) Ion solvation and water structure in potassium halide aqueous solutions. Biophys Chem 124:180–191

    Article  CAS  PubMed  Google Scholar 

  • Stepankova V, Paterova J, Damborsky J, Jungwirth P, Chaloupkova R, Heyda J (2013) Cation-specific effects on enzymatic catalysis driven by interactions at the tunnel mouth. J Phys Chem B 117:6394–6402

    Article  CAS  PubMed  Google Scholar 

  • Treherne JM, Stern JS, Flack WJ, Young JM (1991) Inhibition by cations of antagonist binding to histamine H1-receptors: differential effect of sodium ions on the binding of two radioligands. Br J Pharmacol 103:1745–1751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tselnicker JF, Tsemakhovich V, Rishal I, Kahanovitch U, Dessauer CW, Dascal N (2014) Dual regulation of G proteins and the G-protein-activated K+ channels by lithium. PNAS 111:5018–5023

    Article  CAS  Google Scholar 

  • Varma S, Rempe SB (2006) Coordination numbers of alkali metal ions in aqueous solutions. Biophys Chem 124:192–199

    Article  CAS  PubMed  Google Scholar 

  • Vosahlikova M, Jurkiewicz P, Roubalova L, Hof M, Svoboda P (2014) High- and low-affinity sites for sodium in δ-OR-Gi1α (Cys351-Ile351) fusion protein stably expressed in HEK293 cells; functional significance and correlation with biophysica state of the plasma membrane. Naunyn Schmiedebergs Arch Pharmacol 387:487–502

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, George SR, Seeman P (1985) Regulation of anterior pituitary D2 dopamine receptors by magnesium and sodium ions. J Neurochem 45:1842–1849

    Article  CAS  PubMed  Google Scholar 

  • Wenzel-Seifert K, Hurt CM, Seifert R (1998) High constitutive activity of the human formyl peptide receptor. J Biol Chem 273:24181–24189

    Article  CAS  PubMed  Google Scholar 

  • Wittmann H-J, Seifert R, Strasser A (2014a) Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In silico Pharmacol 2:1–14

    Article  Google Scholar 

  • Wittmann H-J, Seifert R, Strasser A (2014b) Sodium binding to hH3R and hH4R—a molecular modelling study. J Mol Model. doi:10.1007/s00894-014-2394-2

    PubMed  Google Scholar 

  • Yang Z, Liu X-J, Chen C, Hallings PJ (2010) Hofmeister effects on activity and stability of alkaline phosphatase. Biochim Biophys Acta, Proteins Proteomics 1804:821–828

    Article  CAS  Google Scholar 

  • Yuan S, Vogel H, Filipek S (2013) The role of water and sodium ions in the activation of the μ-opioid receptor. Angew Chem Int Ed 52:10112–10115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the collaboration with Dr. D. Schnell, in the hH3R project. This work was supported by grants of the Deutsche Forschungsgemeinschaft (GRK 1910, GRK 1441, SFB 587) and the European Union (COST programme BM0806 (H4R network)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Strasser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strasser, A., Wittmann, HJ., Schneider, E.H. et al. Modulation of GPCRs by monovalent cations and anions. Naunyn-Schmiedeberg's Arch Pharmacol 388, 363–380 (2015). https://doi.org/10.1007/s00210-014-1073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1073-2

Keywords

Navigation