Skip to main content
Log in

Role of the second and third extracellular loops of the histamine H4 receptor in receptor activation

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The histamine H4 receptor subtype (H4R) belongs to the class 1 of G protein-coupled receptors and is involved in inflammatory and immunological processes. The aim of this study was to elucidate the importance of extracellular regions for the large species differences between human (h) and canine (c) H4R. Therefore, chimeric receptors were generated by replacing corresponding domains of the hH4R with canine N-terminus (hcNTH4R) and three canine extracellular loops, respectively (hcE1H4R, hcE2H4R and hcE3H4R). Wild type and chimeric H4 receptors were expressed in Sf9 insect cells and subsequently characterized in [3H]histamine-binding experiments and in steady-state GTPase activity assays, where standard H4R ligands histamine, 5-methylhistamine, thioperamide, 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ7777120) and clozapine were examined. The exchange of N-terminus or first extracellular loop did not influence hH4R pharmacology. The effect of altered second extracellular loop (E2-loop) and third extracellular loop (E3-loop) was rather ligand specific than agonist/inverse agonist specific. At hcE3H4R, the potency of histamine and 5-methylhistamine significantly decreased. The efficacy of the inverse agonist thioperamide was strongly reduced at hcE2H4R and hcE3H4R. Surprisingly, JNJ7777120 as weak inverse agonist at hH4R exhibited partial agonistic activity at hcE2H4R and hcE3H4R. Molecular dynamic simulations suggest that the E2- and E3-loops are independently of each other involved in the partial/inverse agonism of JNJ7777120 and that E2- as well as E3-loop do not directly interact with JNJ7777120 in the binding pocket. In conclusion, our study indicates an involvement of the E2- and E3-loops in H4R activation process after binding of some but not all examined ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-MHA:

5-Methylhistamine

c:

Canine

cH4R:

Canine histamine H4 receptor

E1-loop:

First extracellular loop

E2-loop:

Second extracellular loop

E3-loop:

Third extracellular loop

GPCR:

G protein-coupled receptor (synonym for seven transmembrane receptor)

h:

Human

HA:

Histamine

H4R:

Histamine H4 receptor

hH4R:

Human histamine H4 receptor

hcNTH4R:

Human histamine H4R with canine N-terminus

hcE1H4R:

Human histamine H4R with canine E1-loop

hcE2H4R:

Human histamine H4R with canine E2-loop

hcE3H4R:

Human histamine H4R with canine E3-loop

MD:

Molecular dynamics

THIO:

Thioperamide

TM I–VII:

Seven transmembrane domains

References

  • Alewijnse AE, Timmerman H, Jacobs EH, Smit MJ, Roovers E, Cotecchia S, Leurs R (2000) The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H2 receptor. Mol Pharmacol 57:890–898

    PubMed  CAS  Google Scholar 

  • Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G protein-coupled receptor. Nature 463:108–112

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human β2 adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Crocker E, Eilers M, Ahuja S, Hornak V, Hirshfeld A, Sheves M, Smith SO (2006) Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. J Mol Biol 357:163–172

    Article  PubMed  CAS  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  • Deml KF, Beermann S, Neumann D, Strasser A, Seifert R (2009) Interactions of histamine H1 receptor agonists and antagonists with the human histamine H4 receptor. Mol Pharmacol 76:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    Article  PubMed  CAS  Google Scholar 

  • Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK (1997) Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 272:2587–2590

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Lim HD, Zhang M, Desai P, Dai H, Colling PM, Leurs R, Thurmond RL (2008) Cloning and pharmacological characterization of the dog histamine H4 receptor. Eur J Pharmacol 592:26–32

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Kleemann P, Papa D, Vigil-Cruz S, Seifert R (2008) Functional reconstitution of the human chemokine receptor CXCR4 with Gi/Go-proteins in Sf9 insect cells. Naunyn Schmiedeberg's Arch Pharmacol 378:261–274

    Article  CAS  Google Scholar 

  • Lawson Z, Wheatley M (2004) The third extracellular loop of G protein-coupled receptors: more than just a linker between two important transmembrane helices. Biochem Soc Trans 32:1048–1050

    Article  PubMed  CAS  Google Scholar 

  • Leurs R, Chazot PL, Shenton FC, Lim HD, de Esch IJ (2009) Molecular and biochemical pharmacology of the histamine H4 receptor. Br J Pharmacol 157:14–23

    Article  PubMed  CAS  Google Scholar 

  • Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1, H2, and H3 receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314:1310–1321

    Article  PubMed  CAS  Google Scholar 

  • Lim HD, Jongejan A, Bakker RA, Haaksma E, de Esch IJ, Leurs R (2008) Phenylalanine 169 in the second extracellular loop of the human histamine H4 receptor is responsible for the difference in agonist binding between human and mouse H4 receptors. J Pharmacol Exp Ther 327:88–96

    Article  PubMed  CAS  Google Scholar 

  • Lim HD, de Graaf C, Jiang W, Sadek P, McGovern PM, Istyastono EP, Bakker RA, de Esch IJ, Thurmond RL, Leurs R (2010) Molecular determinants of ligand binding to H4R species variants. Mol Pharmacol 77:734–743

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Wilson SJ, Kuei C, Lovenberg TW (2001) Comparison of human, mouse, rat, and guinea pig histamine H4 receptors reveals substantial pharmacological species variation. J Pharmacol Exper Ther 299:121–130

    CAS  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  • Pauwels PJ, Tardif S (2002) Enhanced stability of wild-type and constitutively active α2A adrenoceptors by ligands with agonist, silent and inverse agonist properties. Naunyn Schmiedeberg's Arch Pharmacol 366:134–141

    Article  CAS  Google Scholar 

  • Peeters MC, van Westen GJ, Guo D, Wisse LE, Muller CE, Beukers MW, Ijzerman AP (2011a) GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A2B receptor. FASEB J 25:632–643

    Article  PubMed  CAS  Google Scholar 

  • Peeters MC, van Westen GJ, Li Q, AP IJ (2011b) Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32:35–42

    Article  PubMed  CAS  Google Scholar 

  • Preuss H, Ghorai P, Kraus A, Dove S, Buschauer A, Seifert R (2007) Point mutations in the second extracellular loop of the histamine H2 receptor do not affect the species-selective activity of guanidine-type agonists. Naunyn Schmiedeberg's Arch Pharmacol 376:253–264

    Article  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human β2 adrenergic G protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into β2 adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Roth CB, Hanson MA, Stevens RC (2008) Stabilization of the human β2 adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. J Mol Biol 376:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G protein-interacting conformation. Nature 455:497–502

    Article  PubMed  CAS  Google Scholar 

  • Schneider EH, Seifert R (2009) Histamine H4 receptor-RGS fusion proteins expressed in Sf9 insect cells: a sensitive and reliable approach for the functional characterization of histamine H4 receptor ligands. Biochem Pharmacol 78:607–616

    Article  PubMed  CAS  Google Scholar 

  • Schneider EH, Seifert R (2010) Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 128:387–418

    Article  PubMed  CAS  Google Scholar 

  • Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G protein-independent high-affinity state of the human histamine H4 receptor. Biochemistry 48:1424–1438

    Article  PubMed  CAS  Google Scholar 

  • Schneider EH, Strasser A, Thurmond RL, Seifert R (2010) Structural requirements for inverse agonism and neutral antagonism of indole-, benzimidazole-, and thienopyrrole-derived histamine H4 receptor ligands. J Pharmacol Exp Ther 334:513–521

    Article  PubMed  CAS  Google Scholar 

  • Schnell D, Brunskole I, Ladova K, Schneider EH, Igel P, Dove S, Buschauer A, Seifert R (2011) Expression and functional properties of canine, rat, and murine histamine H4 receptors in Sf9 insect cells. Naunyn Schmiedeberg's Arch Pharmacol 383:457–470

    Article  CAS  Google Scholar 

  • Seifert R, Lee TW, Lam VT, Kobilka BK (1998a) Reconstitution of β2 adrenoceptor-GTP-binding-protein interaction in Sf9 cells. High coupling efficiency in a β2 adrenoceptor-GSα fusion protein. Eur J Biochem 255:369–382

    Article  PubMed  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Lee TW, Gether U, Sanders-Bush E, Kobilka BK (1998b) Different effects of Gsα splice variants on β2 adrenoreceptor-mediated signaling. The β2 adrenoreceptor coupled to the long splice variant of Gsα has properties of a constitutively active receptor. J Biol Chem 273:5109–5116

    Article  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK (2001) Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J Pharmacol Exp Ther 297:1218–1226

    PubMed  CAS  Google Scholar 

  • Seifert R, Schneider EH, Dove S, Brunskole I, Neumann D, Strasser A, Buschauer A (2011) Paradoxical stimulatory effects of the “standard” histamine H4 receptor antagonist JNJ7777120: the H4 receptor joins the club of 7 transmembrane domain receptors exhibiting functional selectivity. Mol Pharmacol 79:631–638

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Javitch JA (2002) The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Striegl B, Wittmann HJ, Seifert R (2008a) Pharmacological profile of histaprodifens at four recombinant histamine H1 receptor species isoforms. J Pharmacol Exp Ther 324:60–71

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, Wittmann HJ, Seifert R (2008b) Ligand-specific contribution of the N terminus and E2-loop to pharmacological properties of the histamine H1 receptor. J Pharmacol Exp Ther 326:783–791

    Article  PubMed  CAS  Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7:41–53

    Article  PubMed  CAS  Google Scholar 

  • Walseth TF, Johnson RA (1979) The enzymatic preparation of [α-32P]nucleoside triphosphates, cyclic [32P]AMP, and cyclic [32P]GMP. Biochim Biophys Acta 562:11–31

    PubMed  CAS  Google Scholar 

  • Wenzel-Seifert K, Arthur JM, Liu HY, Seifert R (1999) Quantitative analysis of formyl peptide receptor coupling to Gαi1, Gαi2, and Gαi3. J Biol Chem 274:33259–33266

    Article  PubMed  CAS  Google Scholar 

  • Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 157:24–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. D. Schnell, Dr. E. Schneider and Dr. H. Appl for their helpful discussions, G. Wilberg (Department of Pharmacology and Toxicology, University of Regensburg), S. Dirrigl and M. Beer-Krön (Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg) for their expert technical assistance and Professor Dr. J. Schlossmann (Department of Pharmacology and Toxicology, University of Regensburg) for provided infrastructure. This work was supported by the Research Training Program GRK760 “Medicinal Chemistry: Molecular Recognition—Ligand–Receptor Interactions” of the German Research Foundation and by the BM0806 program of the European Cooperation in Science and Technology (COST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Buschauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunskole, I., Strasser, A., Seifert, R. et al. Role of the second and third extracellular loops of the histamine H4 receptor in receptor activation. Naunyn-Schmiedeberg's Arch Pharmacol 384, 301–317 (2011). https://doi.org/10.1007/s00210-011-0673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0673-3

Keywords

Navigation