Skip to main content
Log in

Simplified models for heterobivalent ligand binding: when are they applicable and which are the factors that affect their target residence time

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Bivalent ligands often display high affinity/avidity for and long residence time at their target. Thereto responsible is the synergy that emanates from the simultaneous binding of their two pharmacophores to their respective target sites. Thermodynamic cycle models permit the most complete description of the binding process, and thereto, corresponding differential equation-based simulations link the “microscopic” rate constants that govern the individual binding steps to the “macroscopic” bivalent ligand’s binding properties. Present simulations of heterobivalent ligand binding led to an appreciably simpler description thereof. The thermodynamic cycle model can be split into two pathways/lanes that the bivalent ligand can solicit to reach fully bound state. Since the first binding event prompts the still free pharmacophore to stay into “forced proximity” of its target site, such lanes can be looked into by the equations that also apply to induced fit binding mechanisms. Interestingly, the simplest equations apply when bivalency goes along with a large gain in avidity. The overall bivalent ligand association and dissociation will be swifter than via each lane apart, but it is the lane that allows the fastest bidirectional “transit” between the free and the fully bound target that is chiefly solicited. The bivalent ligand’s residence time is governed not only by the stability of the fully bound complex but also by the ability of freshly dissociated pharmacophores to successfully rebind. Hence, the presence of a slow-associating pharmacophore could be counterproductive. Yet, a long residence time is unfortunately also responsible for the slow attainment of binding equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Charlton S, Vauquelin G (2010) Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Brit J Pharmacol 161:1250–1265

    Article  CAS  Google Scholar 

  • Christensen LLH (1997) Theoretical analysis of protein concentration determination using biosensor technology under conditions of partial mass transport limitation. Anal Bioch 249:153–164

    Article  CAS  Google Scholar 

  • Christopoulos A (2002) Allosteric binding sites on cell-surface receptors, novel targets for drug discovery. Nat Rev Drug Discov 1:198–210

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    Article  PubMed  CAS  Google Scholar 

  • Coombs D, Goldstein B (2004) Effects of geometry of the immunological synapse on the delivery of effector molecules. Biophys J 87:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Copeland RA (2010) The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discov 5:305–510

    Article  PubMed  CAS  Google Scholar 

  • Copeland RA (2011) Conformational adaptation of drug–target interactions and residence time. Future Med Chem 3:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  PubMed  CAS  Google Scholar 

  • Daum S, Lücke C, Wildeman D, Schiener-Fischrer C (2007) On the benefit of bivalency in peptide ligand/Pin1 interactions. J Mol Biol 374:147–161

    Article  PubMed  CAS  Google Scholar 

  • De Meyts P, Gauguin L, Manegold Svendsen A, Sarhan M, Knudsen L, Nohr J et al (2009) Ann N Y Acad Sci 160:45–53

    Article  Google Scholar 

  • DeLisi C (1981) The effect of cell size and receptor density on ligand-receptor reaction rate constants. Mol Immunol 18:507–511

    Article  PubMed  CAS  Google Scholar 

  • DeLisi C, Wiegel FW (1981) Effect of nonspecific forces and finite receptor number on rate constants of ligand–cell bound–receptor interactions. Proc Natl Acad Sci USA 78:5569–5572

    Article  PubMed  CAS  Google Scholar 

  • Goldstein B, Dembo M (1995) Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophys J 68:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Goldstein B, Posner RG, Torney DC, Erickson J, Holowka D, Baird B (1989) Competition between solution and cell surface receptors for ligand. Dissociation of hapten bound to surface antibody in the presence of solution antibody. Biophys J 56:955–966

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH (2012) Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Brit J Pharmacol 166:1846–1959

    Article  CAS  Google Scholar 

  • Hoare SRJ (2007) Allosteric modulators of class B G-protein-coupled receptors. Curr Neuropharmacol 5:168–179

    Article  PubMed  CAS  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Kortt AA (1999) High avidity scFv multimers; diabodies and triabodies. J Immunol Meth 231:177–189

    Article  CAS  Google Scholar 

  • Kamal M, Jockers R (2009) Bitopic ligands, all-in-one orthostetic and allosteric. F1000 Biol Reports 1, 77. doi: 10.3410/B1-77

  • Kaufman EN, Jain RK (1992) Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of a theory using fluorescence photobleaching and implications for antibody binding assays. Cancer Res 52:4157–4167

    Google Scholar 

  • Kramer RH, Karpen JW (1998) Spanning biding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395:710–713

    Article  PubMed  CAS  Google Scholar 

  • Lane JR, Sexton PM, Christopoulos A (2013) Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 34:59–65

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Pierce KL, Luttrell LM (2002) Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Mol Pharmacol 62:971–974

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Tonge PJ (2010) Drug–target residence time: critical information for lead optimization. Curr Opin Chem Biol 14:467–474

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    PubMed  CAS  Google Scholar 

  • Mammen M, Choi W-K, Whitesides GM (1998) Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int 37:2754–2794

    Article  Google Scholar 

  • Mohr K, Tränkle C, Kostenis E, Barocelli E, De Amici M, Holzgrabe U (2010) Rational design of dualsteric GPCR ligands: quests and promise. Br J Pharmacol 159:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Morrison JF (1982) The slow-binding and slow, tight-binding inhibition of enzyme-catalysed reactions. Trends Biochem Sci 7:102–105

    Article  CAS  Google Scholar 

  • Müller KM, Arndt KM, Plückthun A (1998) Model and simulation of multivalent binding to fixed ligands. Anal Biochem 261:149–158

    Article  PubMed  Google Scholar 

  • Núñez S, Venhorst J, Kruse CG (2012) Target–drug interactions: first principles and their application to drug discovery. Drug Discov Today 17:10–22

    Article  PubMed  Google Scholar 

  • Perry DC, Mullis KB, Øie S, Sadée W (1980) Opiate antagonist receptor binding in vivo:evidence for a new receptor binding model. Brain Res 199:49–61

    Article  PubMed  CAS  Google Scholar 

  • Plückthun A, Pack P (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnol 3:83–105

    Google Scholar 

  • Rudnick SI, Adams GP (2009) Affinity and avidity an antibody-based tumor targeting. Cancer Biother Radiopharm 24:155–161

    Article  PubMed  CAS  Google Scholar 

  • Schuck P, Minton AP (1996) Analysis of mass transport-limited binding kinetics in evanescent wave biosensors. Anal Bioch 240:262–272

    Article  CAS  Google Scholar 

  • Steinfeld T, Mammen M, Smith JA, Wilson RD, Jasper JR (2007) A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol Pharmacol 72:291–302

    Article  PubMed  CAS  Google Scholar 

  • Strickland S, Palmer G, Massey V (1975) Determination of dissociation constants and specific rate constants of enzyme–substrate (or protein–ligand) interactions from rapid reaction kinetic data. J Biol Chem 250:4048–4052

    PubMed  CAS  Google Scholar 

  • Swinney DC (2004) Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 3:801–808

    Article  PubMed  CAS  Google Scholar 

  • Swinney DC (2006) Can binding kinetics translate to a clinically differentiated drug? From theory to practice. Lett Drug Des Discov 3:569–574

    Article  CAS  Google Scholar 

  • Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 12:31–39

    PubMed  CAS  Google Scholar 

  • Sykes DA, Dowling MR, Charlton CJ (2009) Exploring the mechanism of agonist befficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol Pharmacol 76:543–551

    Article  PubMed  CAS  Google Scholar 

  • Szczuka A, Packeu A, Wennerberg M, Vauquelin G (2009) Molecular mechanism of the persistent bronchodilatory effect of the partial β2-adrenoceptor agonist salmeterol. Br J Pharmacol 158:183–194

    Article  PubMed  CAS  Google Scholar 

  • Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47:5481–5492

    Article  PubMed  CAS  Google Scholar 

  • Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, Gales C et al (2005) Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J 24:1954–1964

    Article  PubMed  CAS  Google Scholar 

  • Valant C, Lane JR, Sexton PM, Christopoulos A (2012) The best of two worlds? Bitopic orthostetic/allosteric ligands of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 52:153–178

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G (2010) Rebinding, or why drugs may act longer in vivo than expected from their in vitro target residence time. Expert Opin Drug Discov 5:927–941

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Charlton S (2010) Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Brit J Pharmacol 161:488–508

    Article  CAS  Google Scholar 

  • Vauquelin G, Charlton S (2013) Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands. Brit J Pharmacol doi:10.1111/bph.12106

  • Vauquelin G, Van Liefde I (2006) From slow antagonist dissociation to long-lasting receptor protection. Trends Pharmacol Sci 27:355–359

    Article  CAS  Google Scholar 

  • Vauquelin G, Van Liefde I (2012) Radioligand dissociation measurements: potential interference of rebinding and allosteric mechanisms and physiological relevance of different model systems. Expert Opin Drug Discov 7:583–595

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Morsing P, Fierens FLP, De Backer J-P, Vanderheyden PML (2001) A two-state receptor model for the interaction between angiotensin II AT1 receptors and their non-peptide antagonists. Biochem Pharmacol 61:277–284

    Article  PubMed  CAS  Google Scholar 

  • Vauquelin G, Bostoen S, Vanderheyden P, Seeman P (2012) Clozapine, atypical antipsychotics and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn-Schmiedeberg’s Arch Pharmacol 385:337–372

    Article  CAS  Google Scholar 

  • Weber M, Bujotzek A, Haag R (2012) Quantifying the rebinding effect in multivalent chemical ligand-receptor systems. J Chem Phys 137. doi: 054111–1–054111–10

    Google Scholar 

  • Yu EW, Koshland DE (2001) Propagating conformational changes over long (and short) distances in proteins. Proc Natl Acad Sci USA 98:9517–9520

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Monsma F (2009) The importance of drug-target residence time. Curr Opin Drug Discov Devel 12:488–496

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Vauquelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vauquelin, G. Simplified models for heterobivalent ligand binding: when are they applicable and which are the factors that affect their target residence time. Naunyn-Schmiedeberg's Arch Pharmacol 386, 949–962 (2013). https://doi.org/10.1007/s00210-013-0881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0881-0

Keywords

Navigation