Skip to main content
Log in

N α-Methylated phenylhistamines exhibit affinity to the hH4R—a pharmacological and molecular modelling study

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Histamine H1-receptor agonists and antagonists exhibit affinity to the human histamine H4-receptor (hH4R). However, the pharmacological profiles between hH1R and hH4R exhibit similarities and differences. Since suprahistaprodifen and trifluoromethylphenylhistamine show significant affinity to hH4R, the aim of this study was to analyse a large number of new phenylhistamines, histaprodifens and phenoprodifens at hH4R to extend the pharmacological profile of these compound classes at hH4R. The hH4R-RGS19 fusion protein was co-expressed with Gαi2 and Gβ1γ2 in Sf9 insect cells, and [3H]histamine competition binding as well as GTPase assays were performed. Based on adequate crystal structures, homology models of hH4R were generated. Molecular modelling studies, including molecular dynamics and prediction of Gibbs energy of ligand binding, were performed in order to explain the pharmacological data at hH4R on molecular level. The exchange of the phenyl moiety of phenylhistamines into the diphenylpropyl moiety of histaprodifens acts, in contrast to hH1R, as partial agonism–inverse agonism switch at hH4R. Based on our studies, some phenylhistamine derivatives with significantly higher affinity at hH4R than at hH1R were identified. The molecular dynamic simulations revealed two different conformations for the highly conserved Trp6.48, suggested to be involved in receptor activation. Furthermore, the predicted Gibbs energy of ligand binding for six selected phenylhistamines was in very good agreement with the experimentally determined affinities. We identified phenylhistamine derivatives with higher affinity at hH4R than at hH1R. Besides, we have identified partial agonism–inverse agonism switch between phenylhistamines and histaprodifens at hH4R. These results are very important to understand selectivity between hH1R and hH4R and to design new potent H1R and/or H4R receptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cpd:

Compound

h:

Human

H1R:

Histamine H1 receptor

H4R:

Histamine H4 receptor

n. d.:

Not determined

TM:

Transmembrane Domain

References

  • Ballesteros JA, Shi L, Javitch JA (2001) Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 60:1–19

    PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Crocker E, Eilers M, Ahuja S, Hornak V, Hirshfeld A, Sheves M, Smith SO (2006) Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin. J Mol Biol 357:163–172

    Article  PubMed  CAS  Google Scholar 

  • de Esch IJP, Thurmond RL, Jongejan A, Leurs R (2005) The histamine H4 receptor as a new therapeutic target for inflammation. TRENDS Pharmacol Sci 26:462–469

    Google Scholar 

  • Deml KF, Beermann S, Neumann D, Strasser A, Seifert R (2009) Interactions of histamine H1-receptor agonists and antagonists with the human histamine H4-receptor. Mol Pharmacol 76:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Elz S, Kramer K, Pertz HH, Detert H, ter Laak AM, Kühne R, Schunack W (2000) Histaprodifens: synthesis, pharmacological in vitro evaluation, and molecular modeling of a new class of highly active and selective histamine H1-receptor agonists. J Med Chem 43:1071–1084

    Article  PubMed  CAS  Google Scholar 

  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Harusawa S, Araki L, Zuiderveld OP, Smit MJ, Imazu T, Takashima S, Yamamoto Y, Sakamoto Y, Kurihara T, Leurs R, Bakker RA, Yamatodani A (2003) A selective human H4-receptor agonist: (−)-2-cyano-1-methyl-3-{(2R,5R)-5-[1H-imidazol-4(5)-yl]tetrahydrofuran-2-yl}methylguanidine. J Med Chem 46:3162–3165

    Article  PubMed  CAS  Google Scholar 

  • Igel P, Schneider E, Schnell D, Elz S, Seifert R, Buschauer A (2009) NG-Acylated imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by variation of the NG-substituent. J Med Chem 52:2623–2627

    Article  PubMed  CAS  Google Scholar 

  • Jablonowski JA, Grice CA, Chai W, Dvorak CA, Venable JD, Kwok AK, Ly KS, Wei J, Baker SM, Desai PJ, Jiang W, Wilson SJ, Thurmond RL, Karlsson L, Edwards JP, Lovenberg TW, Carruthers NI (2003) The first potent and selective non-imidazole human histamine H4 receptor antagonist. J Med Chem 46:3957–3960

    Article  PubMed  CAS  Google Scholar 

  • Kelley MT, Bürckstümmer T, Wenzel-Seifert K, Dove S, Buschauer A, Seifert R (2001) Distinct interaction of human and guinea pig histamine H2-receptor with guanidine-type agonists. Mol Pharmacol 60:1210–1225

    PubMed  CAS  Google Scholar 

  • Leschke C, Elz S, Garbarg M, Schunack W (1995) Synthesis and histamine H1 receptor agonist activity of a series of 2-phenylhistamines, 2-heteroarylhistamines, and analogues. J Med Chem 38:1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharm Exp Ther 314:1310–1321

    Article  CAS  Google Scholar 

  • Lim HD, Jongejan A, Bakker RA, Haaksma E, de Esch IJP, Leurs R (2008) Phenylalanine 169 in the second extracellular loop of the human histamine H4 receptor is responsible for the difference in agonist binding between human and mouse H4 receptors. J Pharmacol Exp Ther 327:88–96

    Article  PubMed  CAS  Google Scholar 

  • Menghin S, Pertz HH, Kramer K, Seifert R, Schunack W, Elz S (2003) Nα-Imidazolylalkyl and pyridylalkyl derivatives of histaprodifen: synthesis and in vitro evaluation of highly potent histamine H1-receptor agonists. J Med Chem 46:5458–5470

    Article  PubMed  CAS  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  • Preuss H, Ghorai P, Kraus A, Dove S, Buschauer A, Seifert R (2007) Point mutations in the second extracellular loop of the histamine H2 receptor do not affect the species-selective activity of guanidine-type agonists. Naunyn-Schmiedeberg’s Arch Pharmacol 376:253–264

    Article  CAS  Google Scholar 

  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–503

    Article  PubMed  CAS  Google Scholar 

  • Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H4-receptor. Biochemistry 48:1424–1438

    Article  PubMed  CAS  Google Scholar 

  • Schneider EH, Strasser A, Thurmond RL, Seifert R (2010) Structural requirements for inverse agonism of indole-, benzimidazol- and thienopyrrole derived histamine H4R ligands. J Pharmacol Exp Ther 334:513–521

    Article  PubMed  CAS  Google Scholar 

  • Schuettelkopf AW, van Allten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Cryst D60:1355–1363

    CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Bürckstümmer T, Pertz HH, Schunack W, Dove S, Buschauer A, Elz S (2003) Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H1-receptor. J Pharmacol Exp Ther 305:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Smits RA, de Esch IJP, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi G, Adami M, Haaksma E, Leurs R (2008) Discovery of quinazolines as histamine H4 receptor inverse agonists using a scaffold hopping approach. J Med Chem 51:7855–7865

    Article  PubMed  CAS  Google Scholar 

  • Smits RA, Leurs R, de Esch IJP (2009) Major advances in the development of histamine H4 receptor ligands. Drug Discovery Today 14:745–753

    Article  PubMed  CAS  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Straßer A, Striegl B, Wittmann H-J, Seifert R (2008) Pharmacological profile of histaprodifens at four recombinant histamine H1 receptor species isoforms. J Pharmacol Exp Ther 324:1–12

    Google Scholar 

  • Straßer A, Wittmann HJ, Kunze M, Elz S, Seifert R (2009) Molecular basis for the selective interaction of synthetic agonists with the human histamine H1-receptor compared with the guinea pig H1-receptor. Mol Pharmacol 75:1–12

    Article  Google Scholar 

  • Straßer A, Wittmann HJ (2010) 3D-QSAR CoMFA study to predict orientation of suprahistaprodifens and phenoprodifens in the binding pocket of four histamine H1-receptor species. Mol Inf 29:333–341

    Google Scholar 

  • Straatsma TP, Mc Cammon JA (1991) Multiconfiguration thermodynamic integration. J Chem Phys 95:1175–1188

    Article  CAS  Google Scholar 

  • Terzioglu N, van Rijn RM, Bakker RA, De Esch IJP, Leurs R (2004) Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists. Bioorg & Med Chem Lett 14:5251–5256

    Article  CAS  Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nature Reviews Drug Discovery 7:41–53

    Article  PubMed  CAS  Google Scholar 

  • Thurmond RL, Desai PJ, Dunford PJ, Fung-Leung WP, Hofstra CL, Jiang W, Nguyen S, Riley JP, Sun S, Williams KN, Edwards JP, Karlsson L (2004) A potent and selective histamine H4 Receptor antagonist with anti-inflammatory properties. J Pharmacol Exp Ther 309:404–413

    Article  PubMed  CAS  Google Scholar 

  • Venable JD, Cai H, Chai W, Dvorak CA, Grice CA, Jablonowski JA, Shah CR, Kwok AK, Ly KS, Pio B, Wei J, Desai PJ, Jiang W, Nguyen S, Ling P, Wilson SJ, Dunford PJ, Thurmond RL, Lovenberg TW, Karlsson L, Carruthers NI, Edwards JP (2005) Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine H4 antagonists. J Med Chem 48:8289–8298

    Article  PubMed  CAS  Google Scholar 

  • Villa A, Mark AE (2002) Calculation of the free energy of solvation for natural analogs of amino acid side chains. J Comput Chem 23:548–553

    Article  PubMed  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Lee TW, Gether U, Sanders-Bush E, Kobilka BK (1998) Different effects of G splice variants on β2-adrenoreceptor-mediated signaling: the β2-adrenoreceptor coupled to the long splice variant of G has properties of a constitutively active receptor. J Biol Chem 273:5109–5116

    Article  CAS  Google Scholar 

  • Wenzel-Seifert K, Seifert R (2000) Molecular analysis of β2-adrenoceptor coupling to Gs-, Gi-, and Gq-proteins. Mol Pharmacol 58:954–966

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Seefeld for performing the GTPase assays, A. Rossi and R. Winkler for performing the [3H]histamine binding assays and G. Wilberg for her competent help with the cell culture. We thank B. Striegl and M. Kunze for providing the compounds 3, 5, 7, 1030. We thank Prof. Schlossmann for providing infrastructure for a part of experimental studies. This work was supported by DFG (STR 1125/1-1) of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Straßer.

Additional information

We dedicate this paper to the late Prof. Dr. Dr. Dr. h.c. Walter Schunack who developed phenylhistamines and histaprodifens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4.44 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmann, HJ., Elz, S., Seifert, R. et al. N α-Methylated phenylhistamines exhibit affinity to the hH4R—a pharmacological and molecular modelling study. Naunyn-Schmiedeberg's Arch Pharmacol 384, 287–299 (2011). https://doi.org/10.1007/s00210-011-0671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0671-5

Keywords

Navigation