Skip to main content

Advertisement

Log in

Effects of antiepileptic drugs on glutamate release from rat and human neocortical synaptosomes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Aim of this study was to learn whether the antiepileptic drugs (AEDs) carbamazepine, lamotrigine, phenytoin, gabapentin, pregabalin, levetiracetam, and valproate (all at 100 μM) presynaptically influence the neurotransmission of the excitatory transmitter glutamate. The effects of these frequently used AEDs were examined on 3H-glutamate release from superfused synaptosomes of both rat and human neocortex. Release was evoked by elevation of buffer [K+] from 3 to 15 mM or by the Na+ channel activator veratridine (1, 3.2, and 10 μM). Buffer [K+] elevation induced 3H-glutamate exocytosis, which was Ca2+-, but not Na+-, dependent and which was accompanied only in human tissue by release through transporter reversal. In rat tissue, release was diminished by the Na+ channel inhibitors carbamazepine, lamotrigine, and phenytoin, which therefore may also affect presynaptic Ca2+ channels. Interestingly, levetiracetam increased 3H-glutamate release. In contrast, the tested AEDs did not affect K+-evoked 3H-glutamate release in human tissue, neither when the transporters were operative nor when exocytosis was isolated by transporter blockade. Veratridine-evoked 3H-glutamate release was a Na+-dependent transmitter efflux through reversed transporters in both species which in human synaptosomes was accompanied by exocytosis. The latter depended on external Ca2+. Carbamazepine, lamotrigine, and phenytoin reduced this release from both rat and human tissue. There is an obvious species difference in the effects of carbamazepine, lamotrigine, and phenytoin on K+-evoked 3H-glutamate release while their inhibitory effects on veratridine-evoked release were similar. Thus, the depression of 3H-glutamate release by carbamazepine, lamotrigine, and phenytoin may be due to inhibited synaptosomal Na+ or Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad S, Fowler LJ, Whitton PS (2005) Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res 63:141–149

    Article  PubMed  CAS  Google Scholar 

  • Altman DG (1991) Statistics in medical journals: developments in the 1980s. Stat Med 10:1897–1913

    Article  PubMed  CAS  Google Scholar 

  • Belliotti TR, Capiris T, Ekhato IV, Kinsora JJ, Field MJ, Heffner TG, Meltzer LT, Schwarz JB, Taylor CP, Thorpe AJ, Vartanian MG, Wise LD, Su T-Z, Weber ML, Wustrow DJ (2005) Structure-activity relationships of pregabalin and analogues that target the alpha2delta protein. J Med Chem 48:2294–2307

    Article  PubMed  CAS  Google Scholar 

  • Berry D, Millington C (2005) Analysis of pregabalin at therapeutic concentrations in human plasma/serum by reversed-phase HPLC. Ther Drug Monit 27:451–456

    Article  PubMed  CAS  Google Scholar 

  • Brawek B, Löffler M, Weyerbrock A, Feuerstein TJ (2009) Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes. Naunyn Schmiedeberg´s Arch Pharmacol 379:361–369

    Article  CAS  Google Scholar 

  • Crowder JM, Bradford HF (1987) Common anticonvulsants inhibit Ca2+ uptake and amino acid neurotransmitter release in vitro. Epilepsia 28:378–382

    Article  PubMed  CAS  Google Scholar 

  • Custer KL, Austin NS, Sullivan JM, Bajjalieh SM (2006) Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Deri Z, Adam-Vizi V (1993) Detection of intracellular free Na+ concentration of synaptosomes by a fluorescent indicator, Na+-binding benzofuran isophthalate: the effect of veratridine, ouabain, and alpha-latrotoxin. J Neurochem 61:818–825

    Article  PubMed  CAS  Google Scholar 

  • Dooley DJ, Taylor CP, Donevan S, Feltner D (2007) Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 28:75–82

    Article  PubMed  CAS  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  PubMed  CAS  Google Scholar 

  • Eroglu C, Allen NJ, Susman MW, O'Rourke NA, Park CY, Ozkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman AD, Green EM, Lawler J, Dolmetsch R, Garcia KC, Smith SJ, Luo ZD, Rosenthal A, Mosher DF, Barres BA (2009) Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392

    Article  PubMed  CAS  Google Scholar 

  • Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427–446

    Article  PubMed  CAS  Google Scholar 

  • Johannessen SI, Battino D, Berry DJ, Bialer M, Kramer G, Tomson T, Patsalos PN (2003) Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 25:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kammerer M, Brawek B, Freiman TM, Jackisch R, Feuerstein TJ (2009) Species differences between the effects of antiepileptic drugs on glutamate release in rat and human neocortical synaptosomes. Naunyn-Schmiedeberg´s Arch Pharmacol 379(Suppl 1):17

    Google Scholar 

  • Landmark CJ (2007) Targets for antiepileptic drugs in the synapse. Med Sci Monit 13:RA1–RA7

    PubMed  CAS  Google Scholar 

  • Larkman AU, Jack JJ (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5:324–334

    Article  PubMed  CAS  Google Scholar 

  • Levi G, Raiteri M (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci 16:415–419

    Article  PubMed  CAS  Google Scholar 

  • Levi G, Gallo V, Raiteri M (1980) A reevaluation of veratridine as a tool for studying the depolarization-induced release of neurotransmitters from nerve endings. Neurochem Res 5:281–295

    Article  PubMed  CAS  Google Scholar 

  • Lingamaneni R, Hemmings HC Jr (1999) Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes. Neurosci Lett 276:127–130

    Article  PubMed  CAS  Google Scholar 

  • Luccini E, Raiteri L (2007) Mechanisms of [3H]glycine release from mouse spinal cord synaptosomes selectively labeled through GLYT2 transporters. J Neurochem 103:2439–2448

    Article  PubMed  CAS  Google Scholar 

  • Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, Fuks B (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA 101:9861–9866

    Article  PubMed  CAS  Google Scholar 

  • McMahon HT, Nicholls DG (1989) The relationship between cytoplasmic free Ca2+ and the release of glutamate from synaptosomes. Biochem Soc Trans 18:375–377

    Google Scholar 

  • McMahon HT, Nicholls DG (1991) The bioenergetics of neurotransmitter release. Biochim Biophys Acta 1059:243–264

    Article  PubMed  CAS  Google Scholar 

  • McMahon HT, Foran P, Dolly JO, Verhage M, Wiegant VM, Nicholls DG (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem 267:21338–21343

    PubMed  CAS  Google Scholar 

  • Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:S14–S23

    PubMed  CAS  Google Scholar 

  • Morris RG, Black AB, Harris AL, Batty AB, Sallustio BC (1998) Lamotrigine and therapeutic drug monitoring: retrospective survey following the introduction of a routine service. Br J Clin Pharmacol 46:547–551

    Article  PubMed  CAS  Google Scholar 

  • Mula M (2009) New antiepileptic drugs: molecular targets. Cent Nerv Syst Agents Med Chem 9:79–86

    PubMed  CAS  Google Scholar 

  • Nicholls DG (1993) The glutamatergic nerve terminal. Eur J Biochem 212:613–631

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Sala R, Fassio A, Rossetto O, Bonanno G (2000) Entrapping of impermeant probes of different size into nonpermeabilized synaptosomes as a method to study presynaptic mechanisms. J Neurochem 74:423–431

    Article  PubMed  CAS  Google Scholar 

  • Raiteri L, Stigliani S, Zedda L, Raiteri M, Bonanno G (2002) Multiple mechanisms of transmitter release evoked by "pathologically" elevated extracellular [K+]: involvement of transporter reversal and mitochondrial calcium. J Neurochem 80:706–714

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    PubMed  CAS  Google Scholar 

  • Schumacher TB, Beck H, Steinhauser C, Schramm J, Elger CE (1998) Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 39:355–363

    Article  PubMed  CAS  Google Scholar 

  • Sitges M, Chiu LM, Guarneros A, Nekrassov V (2007a) Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings. Neuropharmacology 52:598–605

    Article  PubMed  CAS  Google Scholar 

  • Sitges M, Guarneros A, Nekrassov V (2007b) Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na+ channel-mediated release. Neuropharmacology 53:854–862

    Article  PubMed  CAS  Google Scholar 

  • Stefan H, Feuerstein TJ (2007) Novel anticonvulsant drugs. Pharmacol Ther 113:165–183

    Article  PubMed  CAS  Google Scholar 

  • Stefani A, Spadoni F, Bernardi G (1997) Voltage-activated calcium channels: targets of antiepileptic drug therapy? Epilepsia 38:959–965

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DF, Brown JT, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channels alpha2delta subunit as a target for antiepileptic drug discovery. Epilepsy Res 73:137–150

    Article  PubMed  CAS  Google Scholar 

  • Tuz K, Pena-Segura C, Franco R, Pasantes-Morales H (2004) Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. Eur J Neurosci 19:916–924

    Article  PubMed  Google Scholar 

  • Voso MT, Santini V, Finelli C, Musto P, Pogliani E, Angelucci E, Fioritoni G, Alimena G, Maurillo L, Cortelezzi A, Buccisano F, Gobbi M, Borin L, Di Tucci A, Zini G, Petti MC, Martinelli G, Fabiani E, Fazi P, Vignetti M, Piciocchi A, Liso V, Amadori S, Leone G (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15:5002–5007

    Article  PubMed  CAS  Google Scholar 

  • Waldmeier PC, Baumann PA, Wicki P, Feldtrauer JJ, Stierlin C, Schmutz M (1995) Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913

    PubMed  CAS  Google Scholar 

  • Wang S-J, Tsai J-J, Gean P-W (1997) Lamotrigine inhibits tetraethylammonium-induced synaptic plasticity in the rat amygdala. Neuroscience 81:667–671

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Feuerstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammerer, M., Brawek, B., Freiman, T.M. et al. Effects of antiepileptic drugs on glutamate release from rat and human neocortical synaptosomes. Naunyn-Schmiedeberg's Arch Pharmacol 383, 531–542 (2011). https://doi.org/10.1007/s00210-011-0620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0620-3

Keywords

Navigation