Skip to main content

Advertisement

Log in

hERG K+ channel-associated cardiac effects of the antidepressant drug desipramine

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cardiac side effects of antidepressant drugs are well recognized. Adverse effects precipitated by the tricyclic drug desipramine include prolonged QT intervals, torsade de pointes tachycardia, heart failure, and sudden cardiac death. QT prolongation has been primarily attributed to acute blockade of hERG/I Kr currents. This study was designed to provide a more complete picture of cellular effects associated with desipramine. hERG channels were expressed in Xenopus laevis oocytes and human embryonic kidney (HEK 293) cells, and potassium currents were recorded using patch clamp and two-electrode voltage clamp electrophysiology. Ventricular action potentials were recorded from guinea pig cardiomyocytes. Protein trafficking and cell viability were evaluated in HEK 293 cells and in HL-1 mouse cardiomyocytes by immunocytochemistry, Western blot analysis, or colorimetric MTT assay, respectively. We found that desipramine reduced hERG currents by binding to a receptor site inside the channel pore. hERG protein surface expression was reduced after short-term treatment, revealing a previously unrecognized mechanism. When long-term effects were studied, forward trafficking was impaired and hERG currents were decreased. Action potential duration was prolonged upon acute and chronic desipramine exposure. Finally, desipramine triggered apoptosis in cells expressing hERG channels. Desipramine exerts at least four different cellular effects: (1) direct hERG channel block, (2) acute reduction of hERG surface expression, (3) chronic disruption of hERG trafficking, and (4) induction of apoptosis. These data highlight the complexity of hERG-associated drug effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alderton HR (1995) Tricyclic medication in children and the QT interval: case report and discussion. Can J Psychiatry 40:325–329

    CAS  PubMed  Google Scholar 

  • Bertschy G, Vandel S, Vandel B, Alllers G, Bechtel P, Volmat R (1989) Desipramine dose prediction based on 24-hour single dose levels: feasibility and validity. Pharmacopsychiatry 22:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L, Wible B, Arcangeli A, Tagliatatela M, Morra F, Castaldo P, Crociati O, Rosati B, Faravelli L, Olivotto M, Wanke E (1998) Herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 58:815–822

    CAS  PubMed  Google Scholar 

  • Biederman J, Baldessarini RJ, Wright V, Knee D, Harmatz JS, Goldblatt A (1989) A double-blind placebo controlled study of desipramine in the treatment of ADD: II. Serum drug levels and cardiovascular findings. J Am Acad Child Adolesc Psychiatry 28:903–911

    Article  CAS  PubMed  Google Scholar 

  • Blair J, Taggart B, Martin A (2004) Electrocardiographic safety profile and monitoring guidelines in pediatric psychopharmacology. J Neural Transm 111:791–815

    Article  CAS  PubMed  Google Scholar 

  • Brosen K, Gram LF, Klysner R, Bech P (1986) Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol 30:43–49

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt D, Raeder E, Müller V, Imhof P, Neubauer H (1978) Cardiovascular effects of tricyclic and tetracyclic antidepressants. JAMA 239:213–216

    Article  CAS  PubMed  Google Scholar 

  • Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A (2000) HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer 83:1722–1729

    Article  CAS  PubMed  Google Scholar 

  • Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  CAS  PubMed  Google Scholar 

  • Coccaro EF, Siever LJ (1983) Second generation antidepressants: a comparative review. J Clin Pharmacol 25:241–260

    Google Scholar 

  • Cordes JS, Sun S, Lloyd DB, Bradley JA, Opsahl AC, Tengowski MW, Chen X, Zhou J (2005) Pentamidine reduces hERG expression to prolong the QT interval. Br J Pharmacol 145:12–23

    Article  Google Scholar 

  • Cosazza F, Fiorista F, Rustici A, Brambilla G (1986) Torsade de pointes caused by tricylcic antidepressive agents. Description of a clinical case. G Ital Cardiol 16:1058–1061

    Google Scholar 

  • Crociani O, Guasti L, Balzi M, Becchetti A, Wanke E, Olivotto M, Wymore RS, Arcangeli A (2003) Cell-cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 278:2947–2955

    Article  CAS  PubMed  Google Scholar 

  • Daugherty A, Frayn KN, Redfern WS, Woodward B (1986) The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmacol 87:265–277

    CAS  PubMed  Google Scholar 

  • Dhein S, Perlitz F, Mohr FW (2008) An in vitro model for assessment of drug-induced torsade de pointes arrhythmia: effects of haloperidol and dofetilide on potential duration, repolarization inhomogeneities, and torsade de pointes arrhythmia. Naunyn Schmiedebergs Arch Pharmacol 378:631–644

    Article  CAS  PubMed  Google Scholar 

  • Dietrich A, Mortensen ME, Wheller J (1993) Cardiac toxicity in an adolescent following chronic lithium and imipramine therapy. J Adolesc Health 14:394–397

    Article  CAS  PubMed  Google Scholar 

  • Du XJ, Woodcock EA, Little PJ, Esler MD, Dart AM (1998) Protection of neuronal uptake-1 inhibitors in ischemic and anoxic hearts by norepinephrine-dependent and -independent mechanisms. J Cardiovasc Pharmacol 32:621–628

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, McLachlan AD (1986) Solvation energy in protein folding and binding. Nature 319:199–203

    Article  CAS  PubMed  Google Scholar 

  • Ekins S, Crumb WJ, Sarazan D, Wikel JH, Wrighton SA (2002) Three-dimensional quantitative structure–activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J Pharmacol Exp Ther 301:427–434

    Article  CAS  PubMed  Google Scholar 

  • Farid R, Day T, Friesner R, Pearlstein R (2005) New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem 14:3160–3173

    Article  Google Scholar 

  • Fenster PE, Bressler R, Kipps J (1989) Antiarrhythmic efficacy of desipramine. J Clin Pharmacol 29:114–117

    CAS  PubMed  Google Scholar 

  • Ficker E, Dennis AT, Wang L, Brown AM (2003) Role of cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ Res 92:e87–e100

    Article  PubMed  Google Scholar 

  • Ficker E, Kuryshev YA, Dennis AT, Obejero-Paz C, Wang L, Hawryluk P, Wible BA, Brown AM (2004) Mechanisms of arsenic-induced prolongation of cardiac repolarization. Mol Pharmacol 66:33–44

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Basili S, Merlitz H, Wenzel W (2007) Accuracy of binding mode prediction with a cascadic stochastic tunneling method. Proteins 68:195–204

    Article  CAS  PubMed  Google Scholar 

  • Glassmann AH, Johnson LL, Giardina EG, Walsh BT, Roose SP, Cooper TB, Bigger JT Jr (1983) The use of imipramine in depressed patients with congestive heart failure. JAMA 250:1997–2001

    Article  Google Scholar 

  • Gong Q, Anderson CL, January CT, Zhou Z (2002) Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J Physiol 283:H77–H84

    CAS  Google Scholar 

  • Gong JH, Liu XJ, Shang BY, Chen SZ, Zhen YS (2010) HERG K+ channel related chemosensitivity to sparfloxacin in colon cancer cells. Oncol Rep 23:1747–1756

    CAS  PubMed  Google Scholar 

  • Guo J, Massaeli H, Li W, Xu J, Luo T, Shaw J, Kirshenbaum LA, Zhang S (2007) Identification of IKr and its trafficking disruption induced by probucol in cultured neonatal rat cardiomyocytes. J Pharmacol Exp Ther 321:911–920

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Massaeli H, Xu J, Jia Z, Wigle JT, Mesaeli N, Zhang S (2009) Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. J Clin Invest 119:2745–2757

    Article  CAS  PubMed  Google Scholar 

  • Hondeghem LM (2008a) QT prolongation is an unreliable predictor of ventricular arrhythmia. Heart Rhythm 5:1210–1212

    Article  PubMed  Google Scholar 

  • Hondeghem LM (2008b) Use and abuse of QT and TRIaD in cardiac safety research: importance of study design and conduct. Eur J Pharmacol 584:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hong HK, Park MH, Lee BH, Jo SH (2010) Block of the human ether-a-go-go-related gene (hERG) K+ channel by the antidepressant desipramine. Biochem Biophys Res Commun 394:536–541

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-gated K+ channel. Nature 423:33–41

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, McDonald NA (1997) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J Mol Struct 424:145–155

    Google Scholar 

  • Kiehn J, Thomas D, Karle CA, Schöls W, Kübler W (1999) Inhibitory effects of the class III antiarrhythmic drug amiodarone on cloned HERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol 359:212–219

    Article  CAS  PubMed  Google Scholar 

  • Kokh DB, Wenzel WG (2008) Flexible side chain models improve enrichment rates in in silico screening. J Med Chem 51:5919–5931

    Article  CAS  PubMed  Google Scholar 

  • Kuryshev YA, Ficker E, Wang L, Hawryluk P, Dennis AT, Wible BA, Brown AM, Kang J, Chen XL, Sawamura K, Reynolds W, Rampe D (2005) Pentamidine-induced long QT syndrome and block of hERG trafficking. J Pharmacol Exp Ther 312:316–323

    Article  CAS  PubMed  Google Scholar 

  • Kurz T, Offner B, Schreieck J, Richardt G, Tölg R, Schömig A (1995) Nonexocytotic noradrenaline release and ventricular fibrillation in ischemic rat hearts. Naunyn Schmiedebergs Arch Pharmacol 352:491–496

    Article  CAS  PubMed  Google Scholar 

  • Lenkey N, Karoly R, Kiss JP, Szasz BK, Vizi ES, Mike A (2006) The mechanism of activity-dependent sodium channel inhibition by the antidepressants fluoxetine and desipramine. Mol Pharmacol 70:2052–2063

    Article  CAS  PubMed  Google Scholar 

  • Leonard HL, Meyer MC, Swedo SE, Richter D, Hamburger SD, Allen AJ, Rapoport JL, Tucker E (1995) Electrocardiographic changes during desipramine and clomipramine treatment in children and adolescents. J Am Acad Child Adolesc Psychiatry 34:1460–1468

    Article  CAS  PubMed  Google Scholar 

  • Merlitz H, Wenzel W (2002) Comparison of stochastic optimization methods for receptor-ligand docking. Chem Phys Lett 362:271–277

    Article  CAS  Google Scholar 

  • Merlitz H, Burghardt B, Wenzel W (2003) Application of the stochastic tunneling method to high throughput database screening. Chem Phys Lett 370:68–73

    Article  CAS  Google Scholar 

  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA 97:12329–12333

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Wu J, Zipes DP (2008) The QT syndromes: long and short. Lancet 372:750–763

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Goodsell DS, Halliday R, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to cytotoxic and survival assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Obers S, Staudacher I, Ficker E, Dennis A, Koschny E, Erdal H, Bloehs R, Kisselbach J, Karle CA, Schweizer PA, Katus HA, Thomas D (2010) Multiple mechanisms of hERG liability: K+ current inhibition, disruption of protein trafficking, and apoptosis induced by amoxapine. Naunyn Schmiedebergs Arch Pharmacol 381:385–400

    Article  CAS  PubMed  Google Scholar 

  • Petrecca K, Atanasiu R, Akhavan A, Shrier A (1999) N-linked glycosylation sites determine HERG channel surface membrane expression. J Physiol 515:41–48

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Eckhardt LL, Valdivia CR, Klemens CA, Gillman BM, Anderson CL, Holzem KM, Delisle B, Anson BD, Makielski JC, January CT (2006) Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 149:481–489

    Article  CAS  PubMed  Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  CAS  PubMed  Google Scholar 

  • Robertson GA (2009) Endocytic control of ion channel density as a target for cardiovascular disease. J Clin Invest 119:2531–2534

    Article  CAS  PubMed  Google Scholar 

  • Roden D (2008) Repolarization reserve: a moving target. Circulation 118:981–982

    Article  PubMed  Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  • Satoh MS, Lindahl T (1992) Role of poly (ADP-ribose) formation in DNA repair. Nature 356:356–358

    Article  CAS  PubMed  Google Scholar 

  • Sawyer WT, Caudill JL, Ellison MJ (1984) A case of severe acute desipramine overdose. Am J Psychiatry 141:122–123

    CAS  PubMed  Google Scholar 

  • Schumacher SM, McEwen DP, Zhang L, Arendt KL, Van Genderen KM, Martens JR (2009) Antiarrhythmic drug-induced internalization of the atrial-specific K+ channel Kv1.5. Circ Res 104:1390–1398

    Article  CAS  PubMed  Google Scholar 

  • Shah RR, Hondeghem LM (2005) Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm 2:758–772

    Article  PubMed  Google Scholar 

  • Sindrup SH, Gram LF, Skjold T, Grodum E, Brosen K, Beck-Nielsen H (1990) Clomipramine vs. desipramine vs. placebo in the treatment of diabetic neuropathy symptoms. A double-blind cross-over study. Br J Clin Pharmacol 30:683–691

    CAS  PubMed  Google Scholar 

  • Smith GAM, Tsui HW, Newell EW, Jiang X, Zhu XP, Tsui FWL, Schlichter LC (2002) Functional up-regulation of HERG K+ channels in neoplastic hematopoietic cells. J Biol Chem 277:18528–18534

    Article  CAS  PubMed  Google Scholar 

  • Staudacher I, Schweizer PA, Katus HA, Thomas D (2010) hERG: protein trafficking and potential for drug side effects. Curr Opin Drug Discov Dev 13:23–30

    CAS  Google Scholar 

  • Swanson JR, Jones GR, Krasselt W, Denmark LN, Ratti F (1997) Death of two subjects due to imipramine and desipramine metabolite accumulation during chronic therapy: a review of the literature and possible mechanisms. J Forensic Sci 42:335–339

    CAS  PubMed  Google Scholar 

  • Takemasa H, Nagatomo T, Abe H, Kawakami K, Igarashi T, Tsuguri T, Kabashima N, Tamura M, Okazaki M, Delisle BP, January CT, Otsuji Y (2007) Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome. Br J Pharmacol 153:439–447

    Article  PubMed  Google Scholar 

  • The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2000) Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 283:1967–1975

    Article  Google Scholar 

  • Thomas D, Zhang W, Karle CA, Kathöfer S, Schöls W, Kübler W, Kiehn J (1999) Deletion of protein kinase A phosphorylation sites in the HERG potassium channel inhibits activation shift by protein kinase A. J Biol Chem 274:27457–27462

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Wendt-Nordahl G, Röckl K, Ficker E, Brown AM, Kiehn J (2001) High affinity blockade of HERG human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872. J Pharmacol Exp Ther 297:735–761

    Google Scholar 

  • Thomas D, Kiehn J, Katus HA, Karle CA (2003) Defective protein trafficking in hERG-associated hereditary long QT syndrome (LQT2): molecular mechanisms and restoration of intracellular protein processing. Cardiovasc Res 60:235–241

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Wimmer AB, Wu K, Hammerling BC, Ficker EK, Kuryshev Y, Kiehn J, Katus HA, Schoels W, Karle CA (2004a) Inhibition of human ether-a-go-go-related gene potassium channels by the α1-adrenoceptor antagonists prazosin, doxazosin, and terazosin. Naunyn Schmiedebergs Arch Pharmacol 369:462–472

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Kiehn J, Katus HA, Karle CA (2004b) Adrenergic regulation of the rapid component of the cardiac delayed rectifier potassium current, I(Kr), and the underlying hERG ion channel. Basic Res Cardiol 99:279–287

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Karle CA, Kiehn J (2006) The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des 12:2271–2283

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Bloehs R, Koschny R, Ficker E, Sykora J, Kiehn J, Schlömer K, Gierten J, Kathöfer S, Zitron E, Scholz EP, Kiesecker C, Katus HA, Karle CA (2008) Doxazosin induces apoptosis of cells expressing hERG potassium channels. Eur J Pharmacol 579:98–103

    Article  CAS  PubMed  Google Scholar 

  • Van der Heyden MAG, Smits ME, Vos MA (2008) Drugs and trafficking of ion channels: a new pro-arrhythmic threat on the horizon? Br J Pharmacol 153:406–409

    Article  PubMed  Google Scholar 

  • Varley CK (2001) Sudden death related to selected tricyclic antidepressants in children: epidemiology, mechanisms and clinical implications. Paediatr Drugs 3:613–627

    Article  CAS  PubMed  Google Scholar 

  • Viskin S (1999) Long QT syndromes and torsade de pointes. Lancet 354:1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    CAS  PubMed  Google Scholar 

  • Wang L, Wible BA, Wan X, Ficker E (2007) Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking. J Pharmacol Exp Ther 320:525–534

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Dennis AT, Trieu P, Charron F, Ethier N, Hebert TE, Wan X, Ficker E (2009) Intracellular potassium stabilizes human ether-a-go-go-related gene channels for export from endoplasmic reticulum. Mol Pharmacol 75:927–937

    Article  CAS  PubMed  Google Scholar 

  • Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 91:3438–34342

    Article  CAS  PubMed  Google Scholar 

  • Waslick BD, Walsh BT, Greenhill LL, Giardina EG, Sloan RP, Bigger JT, Bilich K (1999) Cardiovascular effects of desipramine in children and adults during exercise testing. J Am Acad Child Adolesc Psychiatry 38:179–186

    Article  CAS  PubMed  Google Scholar 

  • Wenzel W, Hamacher K (1999) Stochastic tunneling approach for global optimization of complex potential energy landscapes. Phys Rev Lett 82:3003–3007

    Article  CAS  Google Scholar 

  • Wettwer E, Ravens U (2005) Recording cardiac potassium currents with the whole-cell voltage clamp technique. In: Dhein S, Mohr FW, Delmar M (eds) Practical methods in cardiovascular research, 1st edn. Springer, Heidelberg, pp 355–380

    Chapter  Google Scholar 

  • Wible BA, Hawryluk P, Ficker E, Kuryshev YA, Kirsch G, Brown AM (2005) HERG-Lite: a novel comprehensive high-throughput screen for drug-induced hERG risk. J Pharmacol Toxicol Methods 52:136–145

    Article  CAS  PubMed  Google Scholar 

  • Witchel HJ, Hancox JC, Nutt DJ (2003) Psychotropic drugs, cardiac arrhythmia, and sudden death. J Clin Psychopharmacol 23:58–77

    Article  CAS  PubMed  Google Scholar 

  • Zahradnik I, Minarovic I, Zahradnikova A (2008) Inhibition of cardiac L-type calcium channel current by antidepressant drugs. J Pharmacol Exp Ther 324:977–984

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Gong Q, Epstein ML, January CT (1998a) HERG channel dysfunction in human long QT syndrome: intracellular transport and functional defects. J Biol Chem 273:21061–21066

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998b) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank William C. Claycomb (New Orleans) for providing HL-1 cells, R. Bloehs for excellent technical support, and H. Erdal for assistance with cell viability assays. This work was supported in part by grants from the University of Heidelberg and the German Research Foundation (FRONTIERS program to D.T.), the ADUMED-Foundation (to D.T.), the German Heart Foundation/German Foundation of Heart Research (to D.T.), the Max-Planck-Society (TANDEM program to P.A.S.), and the National Institutes of Health (HL71789 to E.F.). W.W. and F.T. acknowledge support from the Landesstiftung Baden-Württemberg and the German Research Foundation Center for Functional Nanostructures.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staudacher, I., Wang, L., Wan, X. et al. hERG K+ channel-associated cardiac effects of the antidepressant drug desipramine. Naunyn-Schmied Arch Pharmacol 383, 119–139 (2011). https://doi.org/10.1007/s00210-010-0583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0583-9

Keywords

Navigation