Skip to main content
Log in

Reduction of ICAM-1 expression by carbon monoxide via soluble guanylate cyclase activation accounts for modulation of neutrophil migration

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Previously, it was demonstrated that the heme/heme oxygenase (HO)/carbon monoxide (CO) pathway inhibits neutrophil recruitment during the inflammatory response. Herein, we addressed whether the inhibitory effect of the HO pathway on neutrophil adhesion and migration involves the reduction of intracellular adhesion molecule type (ICAM)-1 and β2-integrin expression. Mice pretreated with a specific inhibitor of inducible HO (HO-1), zinc protoporphyrin (ZnPP) IX, exhibit enhanced neutrophil adhesion and migration induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS). These findings are associated with an increase in ICAM-1 expression on mesentery venular endothelium. In accordance, HO-1 inhibition did not enhance LPS-induced neutrophil migration and adhesion in ICAM-1-deficient mice. Furthermore, the treatment with a CO donor (dimanganese decacarbonyl, DMDC) that inhibits adhesion and migration of the neutrophils, reduced LPS-induced ICAM-1 expression. Moreover, neither DMDC nor ZnPP IX treatments changed LPS-induced β2-integrin expression on neutrophils. The effect of CO on ICAM-1 expression seems to be dependent on soluble guanylate cyclase (sGC) activation, since 1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one (sGC inhibitor) prevented the observed CO effects. Finally, it was observed that the nitric oxide (NO) anti-inflammatory effects on ICAM-1 expression appear to be indirectly mediated by HO-1 activation, since the inhibition of HO-1 prevented the inhibitory effect of the NO donor (S-nitroso-N-acetylpenicillamine) on LPS-induced ICAM-1 expression. Taken together, these results suggest that CO inhibits ICAM-1 expression on endothelium by a mechanism dependent on sGC activation. Thus, our findings identify the HO-1/CO/guanosine 3′5′-cyclic monophosphate pathway as a potential target for the development of novel pharmacotherapy to control neutrophil migration in inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1400W:

N-(3-(aminomethyl)-benzyl) acetamidine

BVD:

biliverdin

cGMP:

guanosine 3′5′-cyclic monophosphate

CO:

carbon monoxide

DMDC:

dimanganese decacarbonyl

eNOS:

endothelial nitric oxide synthase

fMLP:

formyl-methionyl-leucyl-phenylalanine

HO:

heme oxygenase

HO-1:

inducible heme oxygenase

ICAM-1:

intracellular adhesion molecule type 1

iNOS:

inducible nitric oxide synthase

LPS:

Escherichia coli lipopolysaccharide

NO:

nitric oxide

NOS:

nitric oxide synthase

ODQ:

[1H-(1,2,4)oxadiazolo (4,3-a)quinoxalin-1-one]

Real-time RT-PCR:

real-time reverse transcription-polymerase chain reaction

sGC:

soluble guanylate cyclase

SNAP:

S-nitroso-N-acetylpenicillamine

VCAM-1:

vascular adhesion molecule type 1

ZnPP IX:

zinc protoporphyrin IX

References

  • Abdel Aziz MT, Mostafa T, Atta H, Wassef MA, Fouad HH, Rashed LA, Sabry D (2009) Putative role of carbon monoxide signaling pathway in penile erectile function. J Sex Med 6:49–60

    Article  CAS  PubMed  Google Scholar 

  • Abraham NG, Lin JH, Mitrione SM, Schwartzman ML, Levere RD, Shibahara S (1988) Expression of heme oxygenase gene in rat and human liver. Biochem Biophys Res Commun 150:717–722

    Article  CAS  PubMed  Google Scholar 

  • Alcaraz MJ, Fernandez P, Guillen MI (2003) Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des 9:2541–2551

    Article  CAS  PubMed  Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    Article  CAS  PubMed  Google Scholar 

  • Baez S (1969) Simultaneous measurements of radii and wall thickness of microvessels in the anesthetized rat. Circ Res 25:315–329

    CAS  PubMed  Google Scholar 

  • Baker LR, Brown AL, Stephenson JR, Tabaqchali S, Zatouroff M, Parkin JM, Pinching AJ (1993) Bacteraemia due to recurrent reinfection with Staphylococcus epidermidis associated with defective opsonisation and procidin function in serum. J Clin Pathol 46:398–402

    Article  CAS  PubMed  Google Scholar 

  • Burke-Gaffney A, Hellewell PG (1996) Tumour necrosis factor-alpha-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells: modulation by tyrosine kinase inhibitors. Br J Pharmacol 119:1149–1158

    CAS  PubMed  Google Scholar 

  • Camhi SL, Alam J, Otterbein L, Sylvester SL, Choi AM (1995) Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol 13:387–398

    CAS  PubMed  Google Scholar 

  • Crockett ET, Remelius C, Hess K, Al-Ghawi H (2004) Gene deletion of P-Selectin and ICAM-1 does not inhibit neutrophil infiltration into peritoneal cavity following cecal ligation-puncture. BMC Clin Pathol 4:2

    Article  PubMed  Google Scholar 

  • Dal Secco D, Paron JA, de Oliveira SH, Ferreira SH, Silva JS, Cunha Fde Q (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9:153–164

    Article  CAS  PubMed  Google Scholar 

  • Dal Secco D, Moreira AP, Freitas A, Silva JS, Rossi MA, Ferreira SH, Cunha FQ (2006) Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide 15:77–86

    Article  CAS  PubMed  Google Scholar 

  • Dal-Secco D, Cunha TM, Freitas A, Alves-Filho JC, Souto FO, Fukada SY, Grespan R, Alencar NM, Neto AF, Rossi MA, Ferreira SH, Hothersall JS, Cunha FQ (2008) Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels. J Immunol 181:4287–4298

    CAS  PubMed  Google Scholar 

  • Datta PK, Lianos EA (1999) Nitric oxide induces heme oxygenase-1 gene expression in mesangial cells. Kidney Int 55:1734–1739

    Article  CAS  PubMed  Google Scholar 

  • Deguchi T, Yoshioka M (1982) L-arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. J Biol Chem 257:10147–10151

    CAS  PubMed  Google Scholar 

  • Fernhoff NB, Derbyshire ER, Marletta MA (2009) A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci USA 106:21602–21607

    Article  CAS  PubMed  Google Scholar 

  • Fortes ZB, Farsky SP, Oliveira MA, Garcia-Leme J (1991) Direct vital microscopic study of defective leukocyte–endothelial interaction in diabetes mellitus. Diabetes 40:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Freitas A, Alves-Filho JC, Secco DD, Neto AF, Ferreira SH, Barja-Fidalgo C, Cunha FQ (2006) Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol 149:345–354

    Article  CAS  PubMed  Google Scholar 

  • Johnson TR, Mann BE, Clark JE, Foresti R, Green CJ, Motterlini R (2003) Metal carbonyls: a new class of pharmaceuticals? Angewandte Chemie International ed 42:3722–3729

    Article  CAS  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    Article  CAS  PubMed  Google Scholar 

  • Kubes P, Sihota E, Hickey MJ (1997) Endogenous but not exogenous nitric oxide decreases TNF-alpha-induced leukocyte rolling. Am J Physiol 273:G628–G635

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luscinskas FW, Cybulsky MI, Kiely JM, Peckins CS, Davis VM, Gimbrone MA Jr (1991) Cytokine-activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J Immunol 146:1617–1625

    CAS  PubMed  Google Scholar 

  • Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  CAS  PubMed  Google Scholar 

  • Marconi A, Darquenne S, Boulmerka A, Mosnier M, D’Alessio P (2003) Naftidrofuryl-driven regulation of endothelial ICAM-1 involves nitric oxide. Free Radic Biol Med 34:616–625

    Article  CAS  PubMed  Google Scholar 

  • Miki N, Kawabe Y, Kuriyama K (1977) Activation of cerebral guanylate cyclase by nitric oxide. Biochem Biophys Res Commun 75:851–856

    Article  CAS  PubMed  Google Scholar 

  • Morisaki H, Katayama T, Kotake Y, Ito M, Tamatani T, Sakamoto S, Ishimura Y, Takeda J, Suematsu M (2001) Roles of carbon monoxide in leukocyte and platelet dynamics in rat mesenteric during sevoflurane anesthesia. Anesthesiology 95:192–199

    Article  CAS  PubMed  Google Scholar 

  • Morisaki H, Katayama T, Kotake Y, Ito M, Handa M, Ikeda Y, Takeda J, Suematsu M (2002) Carbon monoxide modulates endotoxin-induced microvascular leukocyte adhesion through platelet-dependent mechanisms. Anesthesiology 97:701–709

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Perrella MA, Lee ME, Kourembanas S (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA 92:1475–1479

    Article  CAS  PubMed  Google Scholar 

  • Nolan S, Dixon R, Norman K, Hellewell P, Ridger V (2008) Nitric oxide regulates neutrophil migration through microparticle formation. Am J Pathol 172:265–273

    Article  CAS  PubMed  Google Scholar 

  • Oshiro S, Takeuchi H, Matsumoto M, Kurata S (1999) Transcriptional activation of heme oxygenase-1 gene in mouse spleen, liver and kidney cells after treatment with lipopolysaccharide or hemoglobin. Cell Biol Int 23:465–474

    Article  CAS  PubMed  Google Scholar 

  • Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455

    Article  CAS  PubMed  Google Scholar 

  • Pober JS, Cotran RS (1990) The role of endothelial cells in inflammation. Transplantation 50:537–544

    Article  CAS  PubMed  Google Scholar 

  • Seldon MP, Silva G, Pejanovic N, Larsen R, Gregoire IP, Filipe J, Anrather J, Soares MP (2007) Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol 179:7840–7851

    CAS  PubMed  Google Scholar 

  • Smith CW (1993) Endothelial adhesion molecules and their role in inflammation. Can J Physiol Pharmacol 71:76–87

    CAS  PubMed  Google Scholar 

  • Soares MP, Seldon MP, Gregoire IP, Vassilevskaia T, Berberat PO, Yu J, Tsui TY, Bach FH (2004) Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol 172:3553–3563

    CAS  PubMed  Google Scholar 

  • Steeber DA, Tang ML, Green NE, Zhang XQ, Sloane JE, Tedder TF (1999) Leukocyte entry into sites of inflammation requires overlapping interactions between the L-selectin and ICAM-1 pathways. J Immunol 163:2176–2186

    CAS  PubMed  Google Scholar 

  • Steiner AA, Branco LG, Cunha FQ, Ferreira SH (2001) Role of the haeme oxygenase/carbon monoxide pathway in mechanical nociceptor hypersensitivity. Br J Pharmacol 132:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science New York, NY 235:1043–1046

    CAS  Google Scholar 

  • Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244:6388–6394

    CAS  PubMed  Google Scholar 

  • Terry CM, Clikeman JA, Hoidal JR, Callahan KS (1998) Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1 expression in human endothelial cells. Am J Physiol 274:H883–H891

    CAS  PubMed  Google Scholar 

  • Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS (1999) Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol 277:F882–F889

    CAS  PubMed  Google Scholar 

  • Vachharajani TJ, Work J, Issekutz AC, Granger DN (2000) Heme oxygenase modulates selectin expression in different regional vascular beds. Am J Physiol Heart Circ Physiol 278:H1613–H1617

    CAS  PubMed  Google Scholar 

  • Verri WA Jr, Guerrero AT, Fukada SY, Valerio DA, Cunha TM, Xu D, Ferreira SH, Liew FY, Cunha FQ (2008) IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. Proc Natl Acad Sci USA 105:2723–2728

    Article  CAS  PubMed  Google Scholar 

  • Vicente AM, Guillen MI, Alcaraz MJ (2001) Modulation of haem oxygenase-1 expression by nitric oxide and leukotrienes in zymosan-activated macrophages. Br J Pharmacol 133:920–926

    Article  CAS  PubMed  Google Scholar 

  • Vicente AM, Guillen MI, Habib A, Alcaraz MJ (2003) Beneficial effects of heme oxygenase-1 up-regulation in the development of experimental inflammation induced by zymosan. J Pharmacol Exp Ther 307:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Werner CG, Godfrey V, Arnold RR, Featherstone GL, Bender D, Schlossmann J, Schiemann M, Hofmann F, Pryzwansky KB (2005) Neutrophil dysfunction in guanosine 3′, 5′-cyclic monophosphate-dependent protein kinase I-deficient mice. J Immunol 175:1919–1929

    CAS  PubMed  Google Scholar 

  • Willis D, Moore AR, Frederick R, Willoughby DA (1996) Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med 2:87–90

    Article  CAS  PubMed  Google Scholar 

  • Wohlfart P, Malinski T, Ruetten H, Schindler U, Linz W, Schoenafinger K, Strobel H, Wiemer G (1999) Release of nitric oxide from endothelial cells stimulated by YC-1, an activator of soluble guanylyl cyclase. Br J Pharmacol 128:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106:584–592

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Liu Q, Wang Y, Thorlacius H (2001) CXC chemokines, MIP-2 and KC, induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo. Br J Pharmacol 133:413–421

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Brandish PE, DiValentin M, Schelvis JP, Babcock GT, Marletta MA (2000) Inhibition of soluble guanylate cyclase by ODQ. Biochemistry 39:10848–10854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Walter Miguel Turato for FACS analysis and Fabíola Leslie Mestriner, Ana Kátia dos Santos, Giuliana Bertozi Francisco, and Diva Amabile Montanha de Sousa for their excellent technical assistance. This work was supported by grants from Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Pesquisa (CNPq), and Fundação de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP). Dr. A. Leyva provided English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Q. Cunha.

Additional information

Daniela Dal-Secco and Andressa Freitas contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal-Secco, D., Freitas, A., Abreu, M.A. et al. Reduction of ICAM-1 expression by carbon monoxide via soluble guanylate cyclase activation accounts for modulation of neutrophil migration. Naunyn-Schmied Arch Pharmacol 381, 483–493 (2010). https://doi.org/10.1007/s00210-010-0500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0500-2

Keywords

Navigation