Skip to main content
Log in

Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In endothelial cells, mitochondria play an important regulatory role in physiology as well as in pathophysiology related to excessive inflammation. We have studied the effect of low doses of mitochondrial uncouplers on inflammatory activation of endothelial cells using the classic uncouplers 2,4-dinitrophenol and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, as well as the mitochondria-targeted cationic uncoupler dodecyltriphenylphosphonium (C12TPP). All of these uncouplers suppressed the expression of E-selectin, adhesion molecules ICAM1 and VCAM1, as well as the adhesion of neutrophils to endothelium induced by tumor necrosis factor (TNF). The antiinflammatory action of the uncouplers was at least partially mediated by the inhibition of NFκB activation due to a decrease in phosphorylation of the inhibitory subunit IκBα. The dynamic concentration range for the inhibition of ICAM1 expression by C12TPP was three orders of magnitude higher compared to the classic uncouplers. Probably, the decrease in membrane potential inhibited the accumulation of penetrating cations into mitochondria, thus lowering the uncoupling activity and preventing further loss of mitochondrial potential. Membrane potential recovery after the removal of the uncouplers did not abolish its antiinflammatory action. Thus, mild uncoupling could induce TNF resistance in endothelial cells. We found no significant stimulation of mitochondrial biogenesis or autophagy by the uncouplers. However, we observed a decrease in the relative amount of fragmented mitochondria. The latter may significantly change the signaling properties of mitochondria. Earlier we showed that both classic and mitochondria-targeted antioxidants inhibited the TNF-induced NFκB-dependent activation of endothelium. The present data suggest that the antiinflammatory effect of mild uncoupling is related to its antioxidant action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C12TPP:

dodecyltriphenylphosphonium

DNP:

2,4-dinitrophenol

FCS:

fetal calf serum

mtDNA:

mitochondrial DNA

NAC:

N-acetylcysteine

nDNA:

nuclear DNA

ROS:

reactive oxygen species

SkQ1:

plastoquinolyl-10(6′-decyltriphenyl)phosphonium

TMRM:

tetramethylrhodamine methyl ester

TNF:

tumor necrosis factor

TTFB:

4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole

References

  1. Bruunsgaard, H., Skinhoj, P., Pedersen, A. N., Schroll, M., and Pedersen, B. K. (2000) Ageing, tumor necrosis factor-α (TNF-α) and atherosclerosis, Clin. Exp. Immunol., 121, 255–260.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chung, H. Y., Sung, B., Jung, K. J., Zou, Y., and Yu, B. P. (2006) The molecular inflammatory process in aging, Antioxid. Redox Signal., 8, 572–581.

    Article  CAS  PubMed  Google Scholar 

  3. Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G., and Kaley, G. (2003) Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries, FASEB J., 17, 1183–1185.

    CAS  PubMed  Google Scholar 

  4. Dandona, P., Aljada, A., and Bandyopadhyay, A. (2004) Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol., 25, 4–7.

    Article  CAS  PubMed  Google Scholar 

  5. Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm, Cell, 76, 301–314.

    Article  CAS  PubMed  Google Scholar 

  6. Roebuck, K. A., and Finnegan, A. (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression, J. Leukoc. Biol., 66, 876–888.

    CAS  PubMed  Google Scholar 

  7. Park, J., Choi, H., Min, J. S., Park, S. J., Kim, J. H., Park, H. J., Kim, B., Chae, J. I., Yim, M., and Lee, D. S. (2013) Mitochondrial dynamics modulate the expression of proinflammatory mediators in microglial cells, J. Neurochem., 127, 221–232.

    Article  CAS  PubMed  Google Scholar 

  8. West, A. P., Shadel, G. S., and Ghosh, S. (2011) Mitochondria in innate immune responses, Nature Rev. Immunol., 11, 389–402.

    Article  CAS  Google Scholar 

  9. Davidson, S. M., and Duchen, M. R. (2007) Endothelial mitochondria: contributing to vascular function and disease, Circ. Res., 100, 1128–1141.

    Article  CAS  PubMed  Google Scholar 

  10. Culic, O., Gruwel, M. L., and Schrader, J. (1997) Energy turnover of vascular endothelial cells, Am. J. Physiol., 273, 205–213.

    Google Scholar 

  11. Addabbo, F., Ratliff, B., Park, H. C., Kuo, M. C., Ungvari, Z., Csiszar, A., Krasnikov, B., Sodhi, K., Zhang, F., Nasjletti, A., and Goligorsky, M. S. (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach, Am. J. Pathol., 174, 34–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Madamanchi, N. R., and Runge, M. S. (2007) Mitochondrial dysfunction in atherosclerosis, Circ. Res., 100, 460–473.

    Article  CAS  PubMed  Google Scholar 

  13. Schulz, E., Dopheide, J., Schuhmacher, S., Thomas, S. R., Chen, K., Daiber, A., Wenzel, P., Munzel, T., and Keaney, J. F., Jr. (2008) Suppression of the JNK pathway by induction of a metabolic stress response prevents vascular injury and dysfunction, Circulation, 118, 1347–1357.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wrzosek, A., Lukasiak, A., Gwozdz, P., Malinska, D., Kozlovski, V. I., Szewczyk, A., Chlopicki, S., and Dolowy, K. (2009) Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function, Eur. J. Pharmacol., 602, 105–111.

    Article  CAS  PubMed  Google Scholar 

  15. Poburko, D., Lee, C. H., and van Breemen, C. (2004) Vascular smooth muscle mitochondria at the cross roads of Ca2+ regulation, Cell Calcium, 35, 509–521.

    Article  CAS  PubMed  Google Scholar 

  16. Joo, H. K., Lee, Y. R., Lim, S. Y., Lee, E. J., Choi, S., Cho, E. J., Park, M. S., Ryoo, S., Park, J. B., and Jeon, B. H. (2012) Peripheral benzodiazepine receptor regulates vascular endothelial activations via suppression of the voltagedependent anion channel-1, FEBS Lett., 586, 1349–1355.

    Article  CAS  PubMed  Google Scholar 

  17. Feletou, M., and Vanhoutte, P. M. (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture), Am. J. Physiol. Heart Circ. Physiol., 291, 985–1002.

    Article  Google Scholar 

  18. Galkin, I. I., Pletjushkina, O. Yu., Zinovkin, R. A., Zakharova, V. V., Biryukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent the tumor necrosis factor induced apoptosis of endothelial cells, Biochemistry (Moscow), 79, 124–130.

    Article  CAS  Google Scholar 

  19. Rahman, A., Kefer, J., Bando, M., Niles, W. D., and Malik, A. B. (1998) E-selectin expression in human endothelial cells by TNF-α-induced oxidant generation and NF-κB activation, Am. J. Physiol., 275, L533–544.

    CAS  PubMed  Google Scholar 

  20. Deshpande, S. S., Angkeow, P., Huang, J., Ozaki, M., and Irani, K. (2000) Rac1 inhibits TNF-α-induced endothelial cell apoptosis: dual regulation by reactive oxygen species, FASEB J., 14, 1705–1714.

    Article  CAS  PubMed  Google Scholar 

  21. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging (Albany N. Y.), 6, 671–674.

    Google Scholar 

  22. Brigelius-Flohe, R., and Flohe, L. (2011) Basic principles and emerging concepts in the redox control of transcription factors, Antioxid. Redox Signal., 15, 2335–2381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.

    Article  CAS  PubMed  Google Scholar 

  24. Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663–668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.

    Article  CAS  PubMed  Google Scholar 

  26. Duval, C., Negre-Salvayre, A., Dogilo, A., Salvayre, R., Penicaud, L., and Casteilla, L. (2002) Increased reactive oxygen species production with antisense oligonucleotides directed against uncoupling protein 2 in murine endothelial cells, Biochem. Cell Biol., 80, 757–764.

    Article  CAS  PubMed  Google Scholar 

  27. Fink, B. D., Reszka, K. J., Herlein, J. A., Mathahs, M. M., and Sivitz, W. I. (2005) Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria, Am. J. Physiol. Endocrinol. Metab., 288, 71–79.

    Article  Google Scholar 

  28. Lee, K. U., Lee, I. K., Han, J., Song, D. K., Kim, Y. M., Song, H. S., Kim, H. S., Lee, W. J., Koh, E. H., Song, K. H., Han, S. M., Kim, M. S., Park, I. S., and Park, J. Y. (2005) Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis, Circ. Res., 96, 1200–1207.

    Article  CAS  PubMed  Google Scholar 

  29. Park, J. Y., Park, K. G., Kim, H. J., Kang, H. G., Ahn, J. D., Kim, H. S., Kim, Y. M., Son, S. M., Kim, I. J., Kim, Y. K., Kim, C. D., Lee, K. U., and Lee, I. K. (2005) The effects of the overexpression of recombinant uncoupling protein 2 on proliferation, migration and plasminogen activator inhibitor 1 expression in human vascular smooth muscle cells, Diabetologia, 48, 1022–1028.

    Article  CAS  PubMed  Google Scholar 

  30. Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K., and Csiszar, A. (2007) Increased mitochondrial H2O2 production promotes endothelial NF-κB activation in aged rat arteries, Am. J. Physiol. Heart Circ. Physiol., 293, 37–47.

    Article  Google Scholar 

  31. Barbour, J. A., and Turner, N. (2014) Mitochondrial stress signaling promotes cellular adaptations, Int. J. Cell Biol., 2014, 156020.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tilstra, J. S., Clauson, C. L., Niedernhofer, L. J., and Robbins, P. D. (2011) NF-κB in aging and disease, Aging Dis., 2, 449–465.

    PubMed Central  PubMed  Google Scholar 

  33. Popova, E. N., Pletjushkina, O. Y., Dugina, V. B., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Skulachev, V. P., and Chernyak, B. V. (2010) Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation, Antioxid. Redox Signal., 13, 1297–1307.

    Article  CAS  PubMed  Google Scholar 

  34. Izyumov, D. S., Domnina, L. V., Nepryakhina, O. K., Avetisyan, A. V., Golyshev, S. A., Ivanova, O. Yu., Korotetskaya, M. V., Lyamzayev, K. G., Pletjushkina, O. Yu., Popova, E. N., and Chernyak, B. V. (2010) Mitochondria as sources of reactive oxygen species during oxidative stress. The study with novel mitochondria-targeted antioxidants on the basis of “Skulachev ions”, Biochemistry (Moscow), 75, 123–129.

    Article  CAS  Google Scholar 

  35. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Yu., Fetisova, E. K., Ivanova, O. Yu., Kalinina, N. I., Lichinitser, M. R., Lukashev, A. N., Khromova, N. V., Kopnin, B. P., Korotetskaya, M. V., Pletjushkina, O. Yu., Popova, E. N., Shagieva, G. S., Skulachev, M. V., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasilyev, Yu. M., and Skulachev, V. P. (2008) Mitochondriatargeted plastoquinone derivative as a tool interrupting the aging program. 3. SkQ1 suppresses tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316.

    Article  CAS  Google Scholar 

  36. Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity, Aging Cell, 7, 552–560.

    Article  CAS  PubMed  Google Scholar 

  37. Cerqueira, F. M., Laurindo, F. R., and Kowaltowski, A. J. (2011) Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis, PLoS One, 6, e18433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lyamzaev, K. G., Izyumov, D. S., Avetisyan, A. V., Yang, F., Pletjushkina, O. Y., and Chernyak, B. V. (2004) Inhibition of mitochondrial bioenergetics: the effects on structure of mitochondria in the cell and on apoptosis, Acta Biochim. Pol., 51, 553–562.

    CAS  PubMed  Google Scholar 

  39. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518–524.

    Article  CAS  PubMed  Google Scholar 

  40. Bradley, J. R. (2008) TNF-mediated inflammatory disease, J. Pathol., 214, 149–160.

    Article  CAS  PubMed  Google Scholar 

  41. Hirata, Y., Nagata, D., Suzuki, E., Nishimatsu, H., Suzuki, J.-I., and Nagai, R. (2010) Diagnosis and treatment of endothelial dysfunction in cardiovascular disease, Int. Heart J., 51, 1–6.

    Article  CAS  PubMed  Google Scholar 

  42. Plotnikov, E. Yu., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chuprykina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Yu. N., Skulachev, V. P., and Zorov, D. B. (2012) Partial uncoupling of respiration and phosphorylation as one of the pathways of implementation of the nephro- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Popova.

Additional information

Original Russian Text © V. P. Romaschenko, R. A. Zinovkin, I. I. Galkin, V. V. Zakharova, A. A. Panteleeva, A. V. Tokarchuk, K. G. Lyamzaev, O. Yu. Pletjushkina, B. V. Chernyak, E. N. Popova, 2015, published in Biokhimiya, 2015, Vol. 80, No. 5, pp. 723–734.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romaschenko, V.P., Zinovkin, R.A., Galkin, I.I. et al. Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor. Biochemistry Moscow 80, 610–619 (2015). https://doi.org/10.1134/S0006297915050144

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915050144

Key words

Navigation