Skip to main content

Advertisement

Log in

Anticholinergic effects of cis- and trans-isomers of two metabolites of propiverine

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The muscarinic receptor antagonist propiverine used for therapy of overactive bladder undergoes first pass metabolism, leading to several active metabolites, which affect muscarinic receptors and L-type Ca2+ channels with different potencies. M-5, the major metabolite in blood, and M-6 can be synthesized as cis- and trans-isomers. We systematically investigated the pharmacodynamic profiles of the isomers on detrusor contractile function. In murine and porcine detrusor, the effects of the derivatives were examined on contractions induced by electric field stimulation (EFS), cumulatively increasing concentrations of carbachol or high KCl concentration. EFS contractions were concentration-dependently reduced by the M-5 and M-6 isomers although to a different extent. M-5 cis was slightly more potent than M-5 trans , but the differences did not reach statistical significance. M-6 cis was significantly more potent than M-6 trans . Responses to carbachol were antagonized by all compounds due to rightward shifts of the concentration–response curves, but only M-5 trans also significantly reduced the maximum response. pK B values obtained with Schild plot analysis indicated slightly higher potency for M-6 cis than M-6 trans . Ca2+ influx-dependent contractions elicited by K+ depolarization were less impaired by low concentrations of the M-6 isomers, but strongly suppressed by 100 µM of the M-5 isomers, suggesting an additional effect of the two M-5 isomers on Ca2+ influx. All investigated isomers of M-5 and M-6 are biologically active in reducing detrusor contraction in animal tissue. While M-5cis, M-6 cis , and M-6 trans possess surmountable or partially surmountable antagonistic properties at muscarinic receptors, M-5 trans is a strong non-competitive antagonist. However, at higher concentration ranges, all four compounds seem to have additional effects on Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams P (2003) Describing bladder storage function: overactive bladder syndrome and detrusor overactivity. Urology 62:28–37, discussion 40-22

    Article  PubMed  Google Scholar 

  • Abrams P (2005) Urgency: the key to defining the overactive bladder. BJU Int 96(Suppl 1):1–3

    Article  PubMed  Google Scholar 

  • Abrams P, Andersson KE (2007) Muscarinic receptor antagonists for overactive bladder. BJU Int 100:987–1006

    Article  CAS  PubMed  Google Scholar 

  • Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 148:565–578

    Article  CAS  PubMed  Google Scholar 

  • Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84:935–986

    Article  CAS  PubMed  Google Scholar 

  • Andersson KE, Persson K (1993) The L-arginine/nitric oxide pathway and non-adrenergic, non-cholinergic relaxation of the lower urinary tract. Gen Pharmacol 24:833–839

    CAS  PubMed  Google Scholar 

  • Bayliss M, Wu C, Newgreen D, Mundy AR, Fry CH (1999) A quantitative study of atropine-resistant contractile responses in human detrusor smooth muscle, from stable, unstable and obstructed bladders. J Urol 162:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Fetscher C, Fleichman M, Schmidt M, Krege S, Michel MC (2002) M(3) muscarinic receptors mediate contraction of human urinary bladder. Br J Pharmacol 136:641–643

    Article  CAS  PubMed  Google Scholar 

  • Frei E, Hofmann F, Wegener JW (2009) Phospholipase C mediated Ca2+ signals in murine urinary bladder smooth muscle. Eur J Pharmacol 610:106–109

    Article  CAS  PubMed  Google Scholar 

  • Fry CH, Skennerton D, Wood D, Wu C (2002) The cellular basis of contraction in human detrusor smooth muscle from patients with stable and unstable bladders. Urology 59:3–12

    Article  PubMed  Google Scholar 

  • Giglio D, Tobin G (2009) Muscarinic receptor subtypes in the lower urinary tract. Pharmacology 83:259–269

    Article  CAS  PubMed  Google Scholar 

  • Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147(Suppl 2):S80–S87

    Article  CAS  PubMed  Google Scholar 

  • Madersbacher H, Mürtz G (2001) Efficacy, tolerability and safety profile of propiverine in the treatment of the overactive bladder (non-neurogenic and neurogenic). World J Urol 19:324–335

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Oki T, Otsuka A, Shinbo H, Ozono S, Kageyama S, Mikami Y, Araki I, Takeda M, Masuyama K, Yamada S (2006) Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J Urol 175:365–369

    Article  CAS  PubMed  Google Scholar 

  • May K, Westphal K, Giessmann T, Wegner D, Adam U, Lerch MM, Oertel R, Warzok RW, Weitschies W, Braeter M, Siegmund W (2008) Disposition and antimuscarinic effects of the urinary bladder spasmolytics propiverine: influence of dosage forms and circadian-time rhythms. J Clin Pharmacol 48:570–579

    Article  CAS  PubMed  Google Scholar 

  • Michel MC, Hegde SS (2006) Treatment of the overactive bladder syndrome with muscarinic receptor antagonists: a matter of metabolites? Naunyn Schmiedebergs Arch Pharmacol 374:79–85

    Article  CAS  PubMed  Google Scholar 

  • Ouslander JG (2004) Management of overactive bladder. N Engl J Med 350:786–799

    Article  CAS  PubMed  Google Scholar 

  • Pessina F, Marazova K, Kalfin R, Sgaragli G, Manganelli A, Milenov K (2001) Mechanical response to electrical field stimulation of rat, guinea-pig, monkey and human detrusor muscle: a comparative study. Naunyn Schmiedebergs Arch Pharmacol 363:543–550

    Article  CAS  PubMed  Google Scholar 

  • Rivera L, Brading AF (2006) The role of Ca2+ influx and intracellular Ca2+ release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle. BJU Int 98:868–875

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Fetscher C, Krege S, Michel MC (2004) Signal transduction underlying carbachol-induced contraction of human urinary bladder. J Pharmacol Exp Ther 309:1148–1153

    Article  CAS  PubMed  Google Scholar 

  • Sibley GN (1984) A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol 354:431–443

    CAS  PubMed  Google Scholar 

  • Siegmund W, Nigussie M, Tilahun K, Aitenfissu H, Franke G, Wengler A (1990) Anticholinergic properties of propiverine and its metabolites. Pharmazie 45:67–68

    CAS  PubMed  Google Scholar 

  • Siepmann M, Nokhodian A, Thummler D, Kirch W (1998) Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 54:767–771

    Article  CAS  PubMed  Google Scholar 

  • Stevens LA, Chapple CR, Chess-Williams R (2007) Human idiopathic and neurogenic overactive bladders and the role of M2 muscarinic receptors in contraction. Eur Urol 52:531–538

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama Y, Yoshida M, Masunaga K, Satoji Y, Maeda Y, Nagata T, Inadome A, Ueda S (2008) Pharmacological effects of propiverine and its active metabolite, M-1, on isolated human urinary bladder smooth muscle, and on bladder contraction in rats. Int J Urol 15:76–81

    CAS  PubMed  Google Scholar 

  • Uchida S, Kurosawa S, Fujino Oki T, Kato Y, Nanri M, Yoshida K, Yamada S (2007) Binding activities by propiverine and its N-oxide metabolites of L-type calcium channel antagonist receptors in the rat bladder and brain. Life Sci 80:2454–2460

    Article  CAS  PubMed  Google Scholar 

  • Wegener JW, Schulla V, Lee TS, Koller A, Feil S, Feil R, Kleppisch T, Klugbauer N, Moosmang S, Welling A, Hofmann F (2004) An essential role of Cav1.2 L-type calcium channel for urinary bladder function. FASEB J 18:1159–1161

    CAS  PubMed  Google Scholar 

  • Wuest M, Braeter M, Schoeberl C, Ravens U (2005a) Juvenile pig detrusor: effects of propiverine and three of its metabolites. Eur J Pharmacol 524:145–148

    Article  CAS  PubMed  Google Scholar 

  • Wuest M, Hecht J, Christ T, Braeter M, Schoeberl C, Hakenberg OW, Wirth MP, Ravens U (2005b) Pharmacodynamics of propiverine and three of its main metabolites on detrusor contraction. Br J Pharmacol 145:608–619

    Article  CAS  PubMed  Google Scholar 

  • Wuest M, Hiller N, Braeter M, Hakenberg OW, Wirth MP, Ravens U (2007) Contribution of Ca2+ influx to carbachol-induced detrusor contraction is different in human urinary bladder compared to pig and mouse. Eur J Pharmacol 565:180–189

    Article  CAS  PubMed  Google Scholar 

  • Wuest M, Weiss A, Waelbroeck M, Braeter M, Kelly LU, Hakenberg OW, Ravens U (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn Schmiedebergs Arch Pharmacol 374:87–97

    Article  CAS  PubMed  Google Scholar 

  • Wüst M, Averbeck B, Reif S, Bräter M, Ravens U (2002) Different responses to drugs against overactive bladder in detrusor muscle of pig, guinea pig and mouse. Eur J Pharmacol 454:59–69

    Article  PubMed  Google Scholar 

  • Yono M, Yoshida M, Wada Y, Kikukawa H, Takahashi W, Inadome A, Seshita H, Ueda S (1999) Pharmacological effects of tolterodine on human isolated urinary bladder. Eur J Pharmacol 368:223–230

    Article  CAS  PubMed  Google Scholar 

  • Zhu HL, Brain KL, Aishima M, Shibata A, Young JS, Sueishi K, Teramoto N (2008) Actions of two main metabolites of propiverine (M-1 and M-2) on voltage-dependent L-type Ca2+ currents and Ca2+ transients in murine urinary bladder myocytes. J Pharmacol Exp Ther 324:118–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maria Feilmeier and Sabine Kirsch for their excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Propping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Propping, S., Braeter, M., Grimm, MO. et al. Anticholinergic effects of cis- and trans-isomers of two metabolites of propiverine. Naunyn-Schmied Arch Pharmacol 381, 329–338 (2010). https://doi.org/10.1007/s00210-010-0493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0493-x

Keywords

Navigation