Skip to main content

Advertisement

Log in

Differential modulation of K+-evoked 3H-neurotransmitter release from human neocortex by gabapentin and pregabalin

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Anticonvulsant, analgesic, and anxiolytic effects have been observed both in preclinical and clinical studies with gabapentin (GBP) and pregabalin (PGB). These drugs appear to act by binding to the α2δ subunit of voltage-sensitive Ca2+ channels (VSCC), resulting in the inhibition of neurotransmitter release. In this study, we examined the effects of GBP and PGB (mostly 100 μM, corresponding to relatively high preclinical/clinical plasma levels) on the release of neurotransmitters in human neocortical slices. These slices were prelabeled with 3H-dopamine (3H-DA), 3H-choline (to release 3H-acetylcholine (3H-ACh)), 3H-noradrenaline (3H-NA), and 3H-serotonin (3H-5-HT), and stimulated twice in superfusion experiments by elevation of extracellular K+ in the presence and absence of GBP and PGB. The α2δ ligands produced significant inhibitions of K+-evoked 3H-ACh, 3H-NA, and 3H-5-HT release between 22% and 56% without affecting 3H-DA release. Neither drug reduced 3H-NA release in the presence of l-isoleucine, a putative α2δ antagonist. Interestingly, this antagonism did not occur using the enantiomer, d-isoleucine. These results suggest that GBP and PGB are not general inhibitors of VSCC and neurotransmitter release. Such α2δ ligands appear to be selective modulators of the release of certain, but not all, neurotransmitters. This differential modulation of neurotransmission presumably contributes to their clinical profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandelow B, Wedekind D, Leon T (2007) Pregabalin for the treatment of generalized anxiety disorder: a novel pharmacologic intervention. Expert Rev Neurother 7:769–781

    Article  PubMed  CAS  Google Scholar 

  • Bayer K, Ahmadi S, Zeilhofer HU (2004) Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 46:743–749

    Article  PubMed  CAS  Google Scholar 

  • Belliotti T, Ekhato IV, Capiris T, Kinsora J, Vartanian MG, Field M, Meltzer LT, Heffner T, Schwarz JB, Taylor CP, Thorpe A, Wise L, Su T-Z, Weber ML, Wustrow DJ (2005) Structure–activity relationships of pregabalin and analogs that target the alpha2-delta protein. J Med Chem 48:2294–2307

    Article  PubMed  CAS  Google Scholar 

  • Bian F, Li Z, Offord JD, Davis MD, McCormick JA, Taylor CP, Walker LC (2006) Calcium channel alpha2-delta type 1 subunit is the major binding protein for pregabalin in neocortex, hippocampus, amygdale, and spinal cord: an ex vivo audioradiographic study in alpha2-delta type 1 genetically modified mice. Brain Res 1075:68–80

    Article  PubMed  CAS  Google Scholar 

  • Brawek B, Donovan CM, Löffler M, Dooley DJ, Weyerbrock A, Feuerstein TJ (2007) Gapapentin and pregabalin modulate K+-evoked [3H]-neurotransmitter release from discrete rat CNS regions and human neocortex. Naunyn Schmiedebergs Arch Pharmacol 375(Suppl 1):55

    Google Scholar 

  • Brown JT, Randall A (2005) Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro. Synapse 55:262–269

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  • Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleichner L, Varney MA, Gu G (2005) Differential distribution of voltage-gated calcium channel alpha-2 delta (α2δ) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J Comp Neurol 491:246–269

    Article  PubMed  CAS  Google Scholar 

  • Dooley DJ, Donovan C, Pugsley TA (2000) Stimulus-dependent modulation of [3H]norepinephrine release from rat neocortical slices by gabapentin and pregabalin. J Pharmacol Exp Ther 295:1086–1093

    PubMed  CAS  Google Scholar 

  • Dooley DJ, Donovan CM, Meder WP, Wetzel SZ (2002) Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+ evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 45:171–190

    Article  PubMed  CAS  Google Scholar 

  • Dooley DJ, Taylor CP, Donevan S, Feltner D (2007) Ca2+ channel α2δ-ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 28:75–82

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein TJ (2008) Presynaptic receptors for dopamine, histamine and serotonin. In: Südhof T, Starke K (eds) Handbook of experimental pharmacology: pharmacology of neurotransmitter release. Springer, Berlin Heidelberg New York (In press)

  • Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su T-Z, Bramwell S, Corradini L, England S, Winks J, Kinloch RA, Dolphin AC, Hendrich J, Webb T, Williams D (2006) Identification of the alpha2-delta-1 subunit of voltage dependent calcium channels as a novel molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci USA 103:17537–17542

    Article  PubMed  CAS  Google Scholar 

  • Freiman TM, Kukolja J, Heinemeyer J, Eckhardt K, Aranda H, Rominger A, Dooley DJ, Zentner J, Feuerstein TJ (2001) Modulation of K+-evoked [3H]-noradrenaline release from rat and human brain slices by gabapentin: involvement of KATP channels. Naunyn Schmiedebergs Arch Pharmacol 363:537–542

    Article  PubMed  CAS  Google Scholar 

  • Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J Biol Chem 271:5768–5776

    Article  PubMed  CAS  Google Scholar 

  • Johnson RM, Inouye GT, Eglen RM, Wong EH (1993) 5-HT3 receptor ligands lack modulatory influence on acetylcholine release in rat entorhinal cortex. Naunyn Schmiedebergs Arch Pharmacol 347:241–247

    Article  PubMed  CAS  Google Scholar 

  • Löffler M, Bubl B, Huethe F, Hubbe U, McIntosh JM, Jackisch R, Feuerstein TJ (2006) Dopamine release in human neocortical slices: characterization of inhibitory autoreceptors and of nicotinic receptor-evoked release. Brain Res Bull 68:361–373

    Article  PubMed  Google Scholar 

  • Luer MS, Hamani C, Dujovny M, Gidal B, Cwik M, Deyo K, Fischer JH (1999) Saturable transport of gabapentin at the blood–brain barrier. Neurol Res 21:559–562

    PubMed  CAS  Google Scholar 

  • Martin DJ, McClelland, Herd MB, Sutton MD Hall Lee K, Pinnock RD, Scott RH (2002) Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurons is dependent on culture conditions and channel subunit expression. Neuropharmacology 42:353–366

    Article  PubMed  CAS  Google Scholar 

  • Reimann W (1983) Inhibition by GABA, baclofen and gabapentin of dopamine release from rabbit caudate nucleus: are there common or different sites of action. Eur J Pharmacol 94:341–344

    Article  PubMed  CAS  Google Scholar 

  • Satzinger G (1994) Antiepileptics from gamma-aminobutyric acid. Arzneimittelforschung 44(3):261–266

    PubMed  CAS  Google Scholar 

  • Schlicker E, Reimann W, Göthert M (1985) Gabapentin decreases monoamine release without affecting acetylcholine release in the brain. Arzneimittelforschung 35:1347–1349

    PubMed  CAS  Google Scholar 

  • Taube HD, Starke K, Borowski E (1977) Presynaptic receptor systems on the noradrenergic neurons of rat brain. Naunyn Schmiedebergs Arch Pharmacol 299:123–141

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DV, Brown JP, Dooley D, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249

    Article  PubMed  CAS  Google Scholar 

  • Taylor CP, Angelotti T, Fauman E (2007) Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 73:137–150

    Article  PubMed  CAS  Google Scholar 

  • Thurlow RJ, Brown JP, Gee NS, Hill DR, Woodruff GN (1993) [3H]gabapentin may label a system-L-like neutral amino acid carrier in the brain. Eur J Pharmacol 247:341–345

    Article  PubMed  CAS  Google Scholar 

  • Thurlow RJ, Hill DR, Woodruff GN (1996a) Comparison of the uptake of [3H]-gabapentin with the uptake of L-[3H]-leucine into rat brain synaptosomes. Br J Pharmacol 118:449–456

    PubMed  CAS  Google Scholar 

  • Thurlow RJ, Hill DR, Woodruff GN (1996b) Comparison of the autoradiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in rat brain. Br J Pharmacol 118:457–465

    PubMed  CAS  Google Scholar 

  • Verbeuren TJ, Coen EP, Schoups A, Van de Velde R, Baeyens R, De Potter WP (1984) Presynaptic serotonin receptors regulate the release of 3H-serotonin in hypothalamic slices of the rabbit. Naunyn Schmiedebergs Arch Pharmacol 327:102–106

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Feuerstein.

Additional information

A preliminary report of this work was presented at the German Society for Experimental and Clinical Pharmacology and Toxicology, Mainz, Germany, March 13–15, 2007 (Brawek et al. 2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brawek, B., Löffler, M., Dooley, D.J. et al. Differential modulation of K+-evoked 3H-neurotransmitter release from human neocortex by gabapentin and pregabalin. Naunyn-Schmied Arch Pharmacol 376, 301–307 (2008). https://doi.org/10.1007/s00210-007-0237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0237-8

Keywords

Navigation