Skip to main content

Advertisement

Log in

Involvement of AP-2 binding sites in regulation of human beta-glucuronidase

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The lysosomal hydrolase β-glucuronidase (β-gluc) can be used for the bioactivation of non-toxic glucuronide prodrugs of anticancer agents. The enzyme is present at high levels in many tumours and hence may lead to an enhanced drug targeting by tumour-selective release of the active anticancer drug. Individual expression and regulation of this enzyme is one factor modulating the bioactivation of glucuronide prodrugs. Nevertheless, in contrast to murine β-gluc, which is inducible by androgens, the human enzyme has been regarded as an unregulated housekeeping gene due to a lacking TATA box and high G+C contents within the putative promotor sequence. Despite these facts, we were able to demonstrate downregulation of human β-gluc expression by the calcium ionophore A23187 and the calcium ATPase inhibitor thapsigargin in the human hepatoma cell line HepG2. However, cis-acting elements responsible for this regulation have not yet been identified. We therefore characterised the 5′-untranslated region of the human β-gluc gene using transient transfection assays with promotor-luciferase constructs in HepG2 cells and cloned fragments between 3,770 bp and 107 bp. A23187 reduced the β-gluc promotor activity. This effect disappeared using fragments smaller than 356 bp. Using site-directed in vitro mutagenesis and gel-electrophoretic-mobility shift assays, we found evidence of an involvement of transcription factor activating protein-2 (AP-2) binding sites on the regulation of human β-glucuronidase by A23187. Our studies provide a basis for the understanding of the transcriptional regulation of the human β-glucuronidase gene and could be useful for the optimisation of glucuronide prodrug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

β-gluc:

β-Glucuronidase

MEM:

Minimal essential medium

DMEM:

Dulbecco’s modified Eagle’s medium

SD:

Standard deviation

AP-2:

Activating protein-2

PMT:

Prodrug mono-therapy

nt:

Nucleotide

NFκB:

Nuclear factor κB

Neg. con.:

Negative control

PLB:

Passive lysis buffer

HBS:

HEPES-buffered saline

COX-2:

Cyclooxygenase 2

MnSOD:

Manganese superoxide dismutase

TPA:

12-O-tetradecanoylphorbol-13-acetate

Sp1:

Specificity protein 1

HMR 1826:

N-[4-β-glucuronyl-3-nitrobenzyloxycarbonyl]doxorubicin

E. coli :

Escherichia coli

bp:

Base pair

References

  • Akiyama Y (1995) TFSEARCH: searching transcription factor binding sites. http://www.rwcp.or.jp/papia/

  • Albin N, Massaad L, Toussaint C, Mathieu MC, Morizet J, Parise O, Gouyette A, Chabot GG (1993) Main drug-metabolizing enzyme systems in human breast tumours and peritumoral tissues. Cancer Res 53:3541–3546

    CAS  PubMed  Google Scholar 

  • Bar-Eli M (2001) Gene regulation in melanoma progression by the AP-2 transcription factor. Pigment Cell Res 14:78–85

    Google Scholar 

  • Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC (1996) A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene 13:1701–1707

    CAS  PubMed  Google Scholar 

  • Bosslet K, Czech J, Hoffmann D (1994) Tumor-selective prodrug activation by fusion protein-mediated catalysis. Cancer Res 54:2151–2159

    CAS  PubMed  Google Scholar 

  • Bosslet K, Czech J, Hoffmann D (1995) A novel one-step tumor-selective prodrug activation system. Tumor Target 1:45–50

    CAS  Google Scholar 

  • Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer HK, Gesson JP, Koch M, Monneret C (1998) Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 58:1195–1201

    CAS  PubMed  Google Scholar 

  • Chazaud C, Oulad-Abdelghani M, Bouillet P, Decimo D, Chambon P, Dolle P (1996) AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryo-genesis. Mech Dev 54:83–94

    Article  CAS  PubMed  Google Scholar 

  • Damberg M, Ekblom J, Oreland L (2000) Chronic pharmacological treatment with certain antidepressants alters the expression and DNA-binding activity of transcription factor AP-2. Life Sci 68:669–678

    Article  CAS  PubMed  Google Scholar 

  • Fishman WH, Kato K, Anstiss CL, Green S (1967) Human serum β-glucuronidase; its measurement and some of its properties. Clin Chim Acta 15:435–447

    Article  CAS  PubMed  Google Scholar 

  • Gaynor RB, Muchardt C, Xia Y, Klisak I, Mohandas T, Sparkes RS, Lusis AJ (1991) Localization of the gene for the DNA-binding protein AP-2 to human chromosome 6p22.3-pter. Genomics 10:1100–1102

    CAS  PubMed  Google Scholar 

  • Gehrmann MC, Opper M, Sedlacek HH, Bosslet K, Czech J (1994) Biochemical properties of recombinant human β-glucuronidase synthesized in baby hamster kidney cells. Biochem J 301:821–828

    CAS  PubMed  Google Scholar 

  • Grube M, Kunert-Keil C, Sperker B, Kroemer HK (2003) Verapamil regulates activity and mRNA-expression of human β-glucuronidase in HepG2 cells. Naunyn-Schmiedebergs Arch Pharmacol 368:463–469

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Usui M, Nishioka J, Zhang ZX, Suzuki K (1998) Regulation of the human protein C inhibitor gene expression in HepG2 cells: role of Sp1 and AP2. Biochem J 332:573–582

    CAS  PubMed  Google Scholar 

  • Hilger-Eversheim K, Moser M, Schorle H, Buettner R (2000) Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260:1–12

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Waheed A, Shah GN, Tomatsu S, Sly WS (1999) Human egasyn binds β-glucuronidase but neither the esterase active site of egasyn nor the C terminus of β-glucuronidase is involved in their interaction. Arch Biochem Biophys 372:53–61

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Drendel WB, Chen ZW, Mathews FS, Sly WS, Grubb JH (1996) Structure of human β-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat Struct Biol 3:375–381

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Hong SJ, LeDoux MS, Kim KS (2001) Regulation of the tyrosine hydroxylase and dopamine β-hydroxylase genes by the transcription factor AP-2. J Neurochem 76:280–294

    Article  CAS  PubMed  Google Scholar 

  • Lüscher B, Mitchell PJ, Williams T, Tjian R (1989) Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev 3:1507–1517

    PubMed  Google Scholar 

  • Miller RD, Hoffmann JW, Powell PP, Kyle JW, Shipley JM, Bachinsky DR, Sly WS (1990) Cloning and characterization of the human beta-glucuronidase gene. Genomics 7:280–283

    CAS  PubMed  Google Scholar 

  • Mitchell PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5:105–119

    CAS  PubMed  Google Scholar 

  • Moser M, Imhof A, Pscherer A, Bauer R, Amselgruber W, Sinowatz F, Hofstadter F, Schule R, Buettner R (1995) Cloning and characterization of a second AP-2 transcription factor: AP-2β. Development 121:2779–2788

    CAS  PubMed  Google Scholar 

  • Mürdter TE, Sperker B, Kivisto KT, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, Kroemer HK (1997) Enhanced uptake of doxorubicin into bronchial carcinoma: β-glucuronidase mediates release of doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res 57:2440–2445

    PubMed  Google Scholar 

  • Mürdter TE, Friedel G, Backman JT, McClellan M, Schick M, Gerken M, Bosslet K, Fritz P, Toomes H, Kroemer HK (2002) Dose optimization of a doxorubicin prodrug (HMR 1826) in isolated perfused human lungs: low tumor pH promotes prodrug activation by beta-glucuronidase. J Pharmacol Exp Ther 301:223–228

    Article  PubMed  Google Scholar 

  • Oshima A, Kyle JW, Miller RD, Hoffmann JW, Powell PP, Grubb JH, Sly WS, Tropak M, Guise KS, Gravel RA (1987) Cloning, sequencing, and expression of cDNA for human β-glucuronidase. Proc Natl Acad Sci USA 84:685–689

    CAS  PubMed  Google Scholar 

  • Paigen K (1989) Mammalian β-glucuronidase: genetics, molecular biology, and cell biology. Prog Nucleic Acid Res Mol Biol 37:155–205

    CAS  PubMed  Google Scholar 

  • Schreiber E, Matthias P, Müller MM, Schaffner W (1989) Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells. Nucleic Acids Res 17:6419

    CAS  PubMed  Google Scholar 

  • Shipley JM, Miller RD, Wu BM, Grubb JH, Christensen SG, Kyle JW, Sly WS (1991) Analysis of the 5′ flanking region of the human β-glucuronidase gene. Genomics 10:1009–1018

    CAS  PubMed  Google Scholar 

  • Sly WS, Quinton BA, McAlister WH, Rimoin DL (1973) β-Glucuronidase deficiency: report of clinical, radiologic and biochemical features of a new mucopolysaccharidosis. J Pediatr 82:249–257

    CAS  PubMed  Google Scholar 

  • Sperker B, Backman JT, Kroemer HK (1997a) The role of β-glucuronidase in drug disposition and drug targeting in humans. Clin Pharmacokinet 33:18–31

    CAS  Google Scholar 

  • Sperker B, Mürdter TE, Schick M, Eckhardt K, Bosslet K, Kroemer HK (1997b) Interindividual variability in expression and activity of human β-glucuronidase in liver and kidney: consequences for drug metabolism. J Pharmacol Exp Ther 281:914–920

    CAS  PubMed  Google Scholar 

  • Sperker B, Werner U, Mürdter TE, Tekkaya C, Fritz P, Wacke R, Adam U, Gerken M, Drewelow B, Kroemer HK (2000) Expression and function of β-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn-Schmiedebergs Arch Pharmacol 362:110–115

    Article  CAS  PubMed  Google Scholar 

  • Sperker B, Tomkiewicz C, Burk O, Barouki R, Kroemer HK (2001) Regulation of human β-glucuronidase by A23187 and thapsigargin in the hepatoma cell line HepG2. Mol Pharmacol 59:177–182

    CAS  PubMed  Google Scholar 

  • Uchida C, Oda T, Sugiyama T, Otani S, Kitagawa M, Ichiyama A (2002) The role of Sp1 and AP-2 in basal and protein kinase A-induced expression of mitochondrial serine: pyruvate aminotransferase in hepatocytes. J Biol Chem 277:39082–39092

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Lei HJ, Huang CY, Zhang Z, Mukherjee AB, Yuan CJ (2002) Induction of cyclooxygenase-2 by staurosporine through the activation of nuclear factor for IL-6 (NF-IL6) and activator protein 2 (AP2) in an osteoblast-like cell line. Biochem Pharmacol 64:177–184

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Porntadavity S, St Clair DK (2002) Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Biochem J 362:401–412

    Article  CAS  PubMed  Google Scholar 

  • Zeng YX, Somasundaram K, el-Deiry WS (1997) AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet 15:78–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Birke Kalb and Bärbel Uecker for their excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Kr 945/4-3, 4-4, 7-1), Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyo K. Kroemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunert-Keil, C., Sperker, B., Bien, S. et al. Involvement of AP-2 binding sites in regulation of human beta-glucuronidase. Naunyn-Schmiedeberg's Arch Pharmacol 370, 331–339 (2004). https://doi.org/10.1007/s00210-004-0989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0989-3

Keywords

Navigation