Skip to main content

Advertisement

Log in

Verapamil regulates activity and mRNA-expression of human β-glucuronidase in HepG2 cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

A promising development in tumor therapy is the application of non-toxic prodrugs from which the active cytostatic is released by endogenous enzymes such as β-glucuronidase (β-gluc). Regulation of β-gluc expression is one crucial factor modulating bioactivation of prodrugs. Recent experiments in rats indicate regulation of β-gluc activity by the calcium channel blocker verapamil.

To further explore this phenomenon, we investigated the effect of verapamil on β-gluc enzyme activity, protein (western blot) and mRNA expression (RT-PCR) as well as the underlying mechanisms (effects of verapamil metabolites; promoter activity) in the human hepatoma cell line HepG2.

Treatment of HepG2 cells with verapamil revealed down-regulation of β-gluc activity, protein, and mRNA level down to 50% of the control with EC50 values of 25 μM. Effects were similar for both enantiomers. Moreover, it was demonstrated that reduced promoter activity contributes to the observed effects. In summary, our data demonstrate regulation of human β-glucuronidase expression by verapamil. Based on our findings we hypothesize that coadministration of verapamil may effect cleavage of glucuronides by β-glucuronidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

β-gluc:

β-Glucuronidase

MEM:

Minimal essential medium

DMEM:

Dublecco’s modified Eagle’s medium

SD:

Standard deviation

RT-PCR:

Real-time PCR

AP2:

Activating protein 2

nt:

Nucleotide

NFκB:

Nuclear factor κB

SP1:

Specificity protein 1

HMR 1826:

N-[4-β-glucuronyl-3-nitrobenzyloxycarbonyl]doxorubicin

bp:

Base pair

M6G:

Morphine-6-glucuronide

MUG:

4-Methylumbelliferyl-β-D-glucuronide

MU:

4-Methylumbelliferone

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  • Akiyama Y (1995) TFSEARCH: searching transcription factor binding sites. http://www.rwcp.or.jp/papia/

  • Bosslet K, Czech J, Hoffmann D (1994) Tumor-selective prodrug activation by fusionprotein-mediated catalysis. Cancer Res 54:2151–2159

    CAS  PubMed  Google Scholar 

  • Caldwell JH, Greenberger NJ (1971) Interruption of the enterohepatic circulation of digitoxin by cholestyramine. I. Protection against lethal digitoxin intoxication. J Clin Invest 50:2626–2637

    CAS  PubMed  Google Scholar 

  • Corrales-Hernandez JJ, Gonzalez-Buitrago JM, Pastor-Encinas I, Garcia-Diez LC, Miralles JM (1988) Androgen environment and beta-glucuronidase activity in the human kidney. Arch Androl 20:185–191

    CAS  PubMed  Google Scholar 

  • Echizen H, Manz M, Eichelbaum M (1988) Electrophysiologic effects of dextro- and levo-verapamil on sinus node and AV node function in humans. J Cardiovasc Pharmacol 12:543–546

    CAS  PubMed  Google Scholar 

  • Fishman WH, Kato K, Anstiss CL, Green S (1967) Human serum beta-glucuronidase; its measurement and some of its properties. Clin Chim Acta 15:435–447

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann MC, Opper M, Sedlacek HH, Bosslet K, Czech J (1994) Biochemical properties of recombinant human beta-glucuronidase synthesized in baby hamster kidney cells. Biochem J 301:821–828

    CAS  PubMed  Google Scholar 

  • Gupta GS, Singh G (1983) Immunological specificity of beta-glucuronidase from human seminal plasma and its immunolocalization in the human reproductive tract. Am J Reprod Immunol 4:122–126

    CAS  PubMed  Google Scholar 

  • Harlow E (1988) Immunoblotting protocols. In: Antibodies. A Laboratory Manual pp 479–510. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Heinert G, Scherberich J, Mondorf W, Weber W (1983) Quantitative enzymatic and immunologic computer-assisted histophotometry of human kidney tissue following neoplastic and other clinically significant alterations. Eur Urol 9:235–241

    CAS  PubMed  Google Scholar 

  • Herman RJ, Van Pham JD, Szakacs CB (1989) Disposition of lorazepam in human beings: enterohepatic recirculation and first-pass effect. Clin Pharmacol Ther 46:18–25

    CAS  PubMed  Google Scholar 

  • Isidoro C, Baccino FM, Hasilik A (1997) Mis-sorting of procathepsin D in metastogenic tumor cells is not due to impaired synthesis of the phosphomannosyl signal. Int J Cancer 70:561–566

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Grubb JH, Sly WS (1993) C-terminal processing of human beta-glucuronidase. The propeptide is required for full expression of catalytic activity, intracellular retention, and proper phosphorylation. J Biol Chem 268:22627–22633

    CAS  PubMed  Google Scholar 

  • Jain S, Drendel WB, Chen ZW, Mathews FS, Sly WS, Grubb JH (1996) Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Nat Struct Biol 3:375–381

    CAS  PubMed  Google Scholar 

  • Kunert-Keil C, Bien S, Siegele I, Mürdter TE, Fritz P, Siegmund W, Kroemer HK, Sperker B (2001) Induction of human beta-glucuronidase expression by rifampicin. Biol Chem 382:105

    Google Scholar 

  • Lotsch J, Sperker B, Kroemer HK, Geisslinger G (2002) Verapamil decreases glucuronidase activity in the gut. Biochem Pharmacol 63:1575–1578

    Article  CAS  PubMed  Google Scholar 

  • Mikus G, Eichelbaum M, Fischer C, Gumulka S, Klotz U, Kroemer HK (1990) Interaction of verapamil and cimetidine: stereochemical aspects of drug metabolism, drug disposition and drug action. J Pharmacol Exp Ther 253:1042–1048

    CAS  PubMed  Google Scholar 

  • Miller RD, Hoffmann JW, Powell PP, Kyle JW, Shipley JM, Bachinsky DR, Sly WS (1990) Cloning and characterization of the human beta-glucuronidase gene. Genomics 7:280–283

    CAS  PubMed  Google Scholar 

  • Murdter TE, Sperker B, Kivisto KT, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K, Toomes H, Dierkesmann R, Kroemer HK (1997) Enhanced uptake of doxorubicin into bronchial carcinoma: beta-glucuronidase mediates release of doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res 57:2440–2445

    PubMed  Google Scholar 

  • Murdter TE, Friedel G, Backman JT, McClellan M, Schick M, Gerken M, Bosslet K, Fritz P, Toomes H, Kroemer HK, Sperker B (2002) Dose optimization of a doxorubicin prodrug (HMR 1826) in isolated perfused human lungs: low tumor pH promotes prodrug activation by beta-glucuronidase. J Pharmacol Exp Ther 301:223–228

    Google Scholar 

  • Oshima A, Kyle JW, Miller RD, Hoffmann JW, Powell PP, Grubb JH, Sly WS, Tropak M, Guise KS, Gravel RA (1987) Cloning, sequencing, and expression of cDNA for human beta-glucuronidase. Proc Natl Acad Sci USA 84:685–689

    CAS  PubMed  Google Scholar 

  • Paigen K (1989) Mammalian beta-glucuronidase: genetics, molecular biology, and cell biology. Prog Nucleic Acid Res Mol Biol 37:155–205

    CAS  PubMed  Google Scholar 

  • Platt D (1970) Biochemischer und histochemischer Nachweis der b-Glukuronidase und b- Azetylglukosaminidase in normalen und pathologisch veränderten Lymphknoten. Blut 284:1–6

    Google Scholar 

  • Rollins DE, Klaassen CD (1979) Biliary excretion of drugs in man. Clin Pharmacokinet 4:368–379

    CAS  PubMed  Google Scholar 

  • Shipley JM, Miller RD, Wu BM, Grubb JH, Christensen SG, Kyle JW, Sly WS (1991) Analysis of the 5’ flanking region of the human beta-glucuronidase gene. Genomics 10:1009–1018

    CAS  PubMed  Google Scholar 

  • Sly WS, Quinton BA, McAlister WH, Rimoin DL (1973) Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr 82:249–257

    CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    PubMed  Google Scholar 

  • Sperker B, Schick M, Kroemer HK (1996) High-performance liquid chromatographic quantification of 4-methylumbelliferyl-beta-D-glucuronide as a probe for human beta-glucuronidase activity in tissue homogenates. J Chromatogr B Biomed Appl 685:181–184

    Article  CAS  PubMed  Google Scholar 

  • Sperker B, Backman JT, Kroemer HK (1997a) The role of beta-glucuronidase in drug disposition and drug targeting in humans. Clin Pharmacokinet 33:18–31

    CAS  Google Scholar 

  • Sperker B, Murdter TE, Schick M, Eckhardt K, Bosslet K, Kroemer HK (1997b) Interindividual variability in expression and activity of human beta-glucuronidase in liver and kidney: consequences for drug metabolism. J Pharmacol Exp Ther 281:914–920

    CAS  PubMed  Google Scholar 

  • Sperker B, Werner U, Murdter TE, Tekkaya C, Fritz P, Wacke R, Adam U, Gerken M, Drewelow B, Kroemer HK (2000) Expression and function of beta-glucuronidase in pancreatic cancer: potential role in drug targeting. Naunyn-Schmiedebergs Arch Pharmacol 362:110–115

    Google Scholar 

  • Sperker B, Tomkiewicz C, Burk O, Barouki R, Kroemer HK (2001) Regulation of human beta-glucuronidase by A23187 and thapsigargin in the hepatoma cell line HepG2. Mol Pharmacol 59:177–182

    CAS  PubMed  Google Scholar 

  • Tanaka J, Gasa S, Sakurada K, Miyazaki T, Kasai M, Makita A (1992) Characterization of the subunits and sugar moiety of human placental and leukemic beta-glucuronidase. Biol Chem Hoppe Seyler 373:57–62

    CAS  PubMed  Google Scholar 

  • Von Richter O, Greiner B, Fromm MF, Fraser R, Omari T, Barclay ML, Dent J, Somogyi AA, Eichelbaum M (2001) Determination of in vivo absorption, metabolism, and transport of drugs by the human intestinal wall and liver with a novel perfusion technique. Clin Pharmacol Ther 70:217–227

    Article  PubMed  Google Scholar 

  • Zenser TV, Lakshmi VM, Davis BB (1999) Human and Escherichia coli beta-glucuronidase hydrolysis of glucuronide conjugates of benzidine and 4-aminobiphenyl, and their hydroxy metabolites. Drug Metab Dispos 27:1064–1067

    CAS  PubMed  Google Scholar 

  • Zhu Y, Conner GE (1994) Intermolecular association of lysosomal protein precursors during biosynthesis. J Biol Chem 269:3846–3851

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by the grant Kr 945 7-1 from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Kroemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grube, M., Kunert-Keil, C., Sperker, B. et al. Verapamil regulates activity and mRNA-expression of human β-glucuronidase in HepG2 cells. Naunyn-Schmiedeberg's Arch Pharmacol 368, 463–469 (2003). https://doi.org/10.1007/s00210-003-0837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0837-x

Keywords

Navigation