Skip to main content
Log in

Kynurenic acid production in cultured bovine aortic endothelial cells. Homocysteine is a potent inhibitor

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Kynurenic acid (KYNA) is a broad-spectrum antagonist at all subtypes of ionotropic glutamate receptors, but is preferentially active at the strychnine-insensitive glycine allosteric site of the N-methyl-d-aspartate (NMDA) receptor and is also a non-competitive antagonist at the alpha7 nicotinic receptor. KYNA occurs in the CNS, urine, serum and amniotic fluid. Whilst it possesses anticonvulsant and neuroprotective properties in the brain, its role in the periphery, however, is unknown. In this study we demonstrated the presence of kynurenine aminotransferase (KAT) I and II in the cytoplasm of bovine aortic endothelial cells (BAEC). BAEC incubated in the presence of the KYNA precursor l-kynurenine synthesized KYNA concentration- and time-dependently. KYNA production was inhibited by the aminotransferase inhibitor aminooxyacetic acid but was not affected by a depolarising concentration of K+ or by 4-aminopyridine. The glutamate agonists l-aspartate and l-glutamate depressed KYNA production significantly. The selective ionotropic glutamate receptor agonists α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid (AMPA) and NMDA were ineffective in this respect. d,l-Homocysteine and l-homocysteine sulphinic acid lowered KYNA production in BAEC. Further investigations are needed to assess the role and importance of KYNA in vessels and peripheral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Auer J, Berent R, Eber B (2001) Homocysteine: a novel risk factor in vascular disease. Coron Health Care 5:89–99

    Article  Google Scholar 

  • Battaglia G, Rassoulpour A, Wu HQ, Hodgkins PS, Kiss C, Nicoletti F, Schwarcz R (2000) Some metabotropic glutamate receptor ligands reduce kynurenate synthesis in rats by intracellular inhibition of kynurenine aminotransferase II. J Neurochem 75:2051–2060

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, Bird ED (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 108:80–87

    CAS  PubMed  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87

    Article  CAS  PubMed  Google Scholar 

  • Bleich S, Junemann A, von Ahsen N, Lausen B, Ritter K, Beck G, Naumann GO, Kornhuber J (2002) Homocysteine and risk of open-angle glaucoma. J Neural Transm 109:1499–504

    Article  CAS  PubMed  Google Scholar 

  • Chiarelli F, Pomilio M, Mohn A, Tumini S, Vanelli M, Morgese G, Spagnoli A, Verrotti A (2000) Homocysteine levels during fasting and after methionine loading in adolescents with diabetic retinopathy and nephropathy. J Pediatr 137:386–392

    PubMed  Google Scholar 

  • Curatalo L, Caccia C, Speciale C, Raimondi L, Cini M, Marconi M, Molinari A, Schwarcz R, (1996) Modulation of extracellular kynurenic acid content by excitatory amino acids in primary cultures of rat astrocytes. Adv Exp Med Biol 398:273–276

    PubMed  Google Scholar 

  • Du F, Schmidt W, Okuno E, Kido R, Kohler C, Schwarcz R (1992) Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 321:477–487

    CAS  PubMed  Google Scholar 

  • Foster AC, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48:273–278

    CAS  PubMed  Google Scholar 

  • Gramsbergen JB, Turski WA, Schwarcz R (1991) Brain-specific control of kynurenic acid production by depolarizing agents. Adv Exp Med Biol 294:587–590

    CAS  PubMed  Google Scholar 

  • Gramsbergen JB, Hodgkins PS, Rassoulpour A, Turski WA, Guidetti P, Schwarcz R (1997) Brain-specific modulation of kynurenic acid synthesis in the rat. J Neurochem 69:290–298

    CAS  PubMed  Google Scholar 

  • Guidetti P, Okuno E, Schwarcz R (1997) Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 50:457–465

    CAS  PubMed  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  • Kapoor R, Okuno E, Kido R, Kapoor V (1997) Immuno-localization of kynurenine aminotransferase (KAT) in the rat medulla and spinal cord. Neuroreport 8:3619–3623

    CAS  PubMed  Google Scholar 

  • Kido R (1991) Kynurenate forming enzymes in liver, kidney and brain. Adv Exp Med Biol 294:201–205

    CAS  PubMed  Google Scholar 

  • Kocki T, Dolinska M, Dybel A, Urbanska EM, Turski WA, Albrecht J (2002) Regulation of kynurenic acid synthesis in C6 glioma cells. J Neurosci Res 68:622–626

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928

    CAS  PubMed  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  • Milart P, Urbanska EU, Turski WA, Paszkowski T, Sikorski R (1999) Intrapartum levels of endogenous glutamate antagonist—kynurenic acid in amniotic fluid, umbilical and maternal blood. Neurosci Res Commun 24:173–178

    Article  CAS  Google Scholar 

  • Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100

    CAS  Google Scholar 

  • Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706

    CAS  PubMed  Google Scholar 

  • Okuno E, Du F, Ishikawa T, Tsujimoto M, Nakamura M, Schwarcz R, Kido R (1990) Purification and characterization of kynurenine-pyruvate aminotransferase from rat kidney and brain. Brain Res 534:37–44

    CAS  PubMed  Google Scholar 

  • Okuno E, Nakamura M, Schwarcz R (1991) Two kynurenine aminotransferases in human brain. Brain Res 542:307–312

    CAS  PubMed  Google Scholar 

  • Okuno E, Tsujimoto M, Nakamura M, Kido R (1993) 2-Aminoadipate-2-oxoglutarate aminotransferase isoenzymes in human liver: a plausible physiological role in lysine and tryptophan metabolism. Enzyme Protein 47:136–148

    CAS  PubMed  Google Scholar 

  • Perkins MN, Stone TW (1982) An ionophoretic investigation of the action of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    CAS  PubMed  Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    Article  CAS  PubMed  Google Scholar 

  • Rejdak R, Zarnowski T, Turski WA, Okuno E, Kocki T, Zagorski Z, Kohler K, Guenther E, Zrenner E (2001) Presence of kynurenic acid and kynurenine aminotransferases in the inner retina. Neuroreport 12:3675–3678

    CAS  PubMed  Google Scholar 

  • Rejdak R, Zarnowski T, Turski WA, Kocki T, Zagorski Z, Zrenner E, Schuettauf F (2003) Alterations of kynurenic acid content in the retina in response to retinal ganglion cell damage. Vision Res 43:497–503

    Article  CAS  PubMed  Google Scholar 

  • Roberts RC, Du F, McCarthy KE, Okuno E, Schwarcz R (1992) Immunocytochemical localization of kynurenine aminotransferase in the rat striatum: a light and electron microscopic study. J Comp Neurol 326:82–90

    CAS  PubMed  Google Scholar 

  • Schmidt W, Guidetti P, Okuno E, Schwarcz R (1993) Characterization of human brain kynurenine aminotransferases using [3H]kynurenine as a substrate. Neuroscience 55:177–184

    Article  PubMed  Google Scholar 

  • Stazka J, Luchowski P, Wielosz M, Kleinrok Z, Urbanska EM (2002) Endothelium-dependent production and liberation of kynurenic acid by rat aortic rings exposed to l-kynurenine. Eur J Pharmacol 448:133–137

    Article  CAS  PubMed  Google Scholar 

  • Swartz KJ, Matson WR, MacGarvey U, Ryan EA, Beal MF (1990) Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromatography with fluorometric and coulometric electrode array detection. Anal Biochem 185:363–376

    PubMed  Google Scholar 

  • Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO Jr, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169

    CAS  PubMed  Google Scholar 

  • Turski WA, Gramsbergen JB, Traitlerm H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to l-kynurenine. J Neurochem 52:1629–1636

    CAS  PubMed  Google Scholar 

  • Urbanska EM, Kocki T, Saran T, Kleinrok Z, Turski WA (1997) Impairment of brain kynurenic acid production by glutamate metabotropic receptor agonists. Neuroreport 8:3501–3505

    CAS  PubMed  Google Scholar 

  • Urbanska EM, Chmielewski M, Kocki T, Turski WA (2000) Formation of endogenous glutamatergic receptors antagonist kynurenic acid—differences between cortical and spinal cord slices. Brain Res 878:210–212

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Murakami H, Horiguchi K, Egawa B (1995) Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain Dev 17:327–329

    CAS  PubMed  Google Scholar 

  • Zdzisinska B, Filar J, Paduch R, Kaczor J, Łokaj I, Kandefer-Szerszen M (2000) The influence of ketone bodies and glucose on interferon, tumor necrosis factor production and NO release in bovine aorta endothelial cells. Vet Immunol Immunopathol 74:237–247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar A. Turski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wejksza, K., Rzeski, W., Parada-Turska, J. et al. Kynurenic acid production in cultured bovine aortic endothelial cells. Homocysteine is a potent inhibitor. Naunyn-Schmiedeberg's Arch Pharmacol 369, 300–304 (2004). https://doi.org/10.1007/s00210-004-0872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0872-2

Keywords

Navigation