Skip to main content
Log in

Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The purpose of this paper is to bring together various loose ends in the theory of integrable systems. For a semisimple Lie algebra \({\mathfrak {g}}\), we obtain several results on the completeness of homogeneous Poisson-commutative subalgebras of \({\mathscr {S}}({\mathfrak {g}})\) on coadjoint orbits. This concerns, in particular, Gelfand–Tsetlin and Mishchenko–Fomenko subalgebras. Our results reveal the crucial role of nilpotent orbits and sheets in \({\mathfrak {g}}\simeq {\mathfrak {g}}^{*}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, D., Panyushev, D.: Multiplicities in the branching rules and the complexity of homogeneous spaces. Mosc. Math. J. 2(1), 17–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avdeev, R.S., Petukhov, A.V.: Spherical actions on flag varieties. Mat. Sb. 205(9), 3–48 (2014). English translation in Sb. Math., 205(9-10), 1223–1263 (2014)

  3. Bolsinov, A.: Commutative families of functions related to consistent Poisson brackets. Acta Appl. Math. 24(3), 253–274 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolsinov, A., Zhang, P.: Jordan–Kronecker invariants of finite-dimensional Lie algebras. Transform. Groups 21(1), 51–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54(1), 61–104 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Colarusso, M., Evens, S.: The complex orthogonal Gelfand–Zeitlin system, arXiv:1808.04424v1 [math.RT]

  8. Crooks, P., Rosemann, S., Roeser, M.: Slodowy slices and the complete integrability of Mishchenko–Fomenko subalgebras on regular adjoint orbits. arXiv:1803.04942v1 [math.SG]

  9. Dufour, J.-P., Zung, N.T.: Poisson structures and their normal forms. In: Progress in Mathematics, vol. 242. Birkhäuser, Basel (2005)

  10. Feigin, B., Frenkel, E., Rybnikov, L.: Opers with irregular singularity and spectra of the shift of argument subalgebra. Duke Math. J. 155(2), 337–363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. (Russian). Dokl. Akad. Nauk SSSR (N.S.) 71, 825–828 (1950). English transl. In: Gelfand, I.M. Collected Papers, vol. II, Springer-Verlag, Berlin, pp. 653–656 (1988)

  12. Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of groups of orthogonal matrices. (Russian). Dokl. Akad. Nauk SSSR (N.S.) 71, 1017–1020 (1950). English transl. In: Gelfand, I.M. Collected Papers, vol. II, Springer-Verlag, Berlin, pp. 657–661 (1988)

  13. de Graaf, W.: Computing with nilpotent orbits in simple Lie algebras of exceptional type. LMS J. Comput. Math. 11, 280–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillemin, V., Sternberg, S.: The moment map and collective motion. Ann. Physics 127(1), 220–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guillemin, V., Sternberg, S.: The Gelfand–Cetlin system and quantization of the complex flag manifolds. J. Funct. Anal. 52(1), 106–128 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guillemin, V., Sternberg, S.: On collective complete integrability according to the method of Thimm. Ergod. Theory Dyn. Syst. 3(2), 219–230 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillemin, V., Sternberg, S.: Multiplicity-free spaces. J. Differ. Geom. 19(1), 31–56 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harada, M.: The symplectic geometry of the Gelfand–Cetlin–Molev basis for representations of \({\rm Sp}(2n,{\mathbb{C}})\). J. Symplectic Geom. 4(1), 1–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heckman, G.J.: Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67(2), 333–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huckleberry, A.T., Wurzbacher, T.: Multiplicity-free complex manifolds. Math. Ann. 286(1–3), 261–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson, K.D.: A note on branching theorems. Proc. Am. Math. Soc. 129(2), 351–353 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Knop, F.: Der Zentralisator einer Liealgebra in einer einhüllenden Algebra. J. Reine Angew. Math. 406, 5–9 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Knop, F.: Weylgruppe und Momentabbildung. Invent. Math. 99, 1–23 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kostant, B.: Fomenko–Mischenko theory, Hessenberg varieties, and polarizations. Lett. Math. Phys. 90(1–3), 253–285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics. I., In: Studies in Lie theory, 319–364, Progr. Math., vol. 243. Birkhäuser Boston (2006)

  27. Krämer, M.: Multiplicity free subgroups of compact connected Lie groups. Arch. Math. 27, 28–36 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kraft, H.: Parametrisierung von Konjugationsklassen in \({\mathfrak{sl}}_n\). Math. Ann. 234(3), 209–220 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Losev, I.V.: Algebraic Hamiltonian actions. Math. Z. 263(3), 685–723 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luna, D.: Sur les orbites fermées des groupes algébriques réductifs. Invent. Math. 16, 1–5 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mishchenko, A.S., Fomenko, A.T.: Euler equation on finite-dimensional Lie groups. Math. USSR Izv. 12, 371–389 (1978)

    Article  MATH  Google Scholar 

  32. Molev, A., Yakimova, O.: Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras. arXiv:1711.03917v1 [math.RT]

  33. Panyushev, D.: Complexity and nilpotent orbits. Manuscr. Math. 83, 223–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Panyushev, D.: The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser. Math. Proc. Camb. Phil. Soc. 134(1), 41–59 (2003)

    Article  Google Scholar 

  35. Panyushev, D., Premet, A., Yakimova, O.: On symmetric invariants of centralisers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Panyushev, D., Yakimova, O.: The argument shift method and maximal commutative subalgebras of Poisson algebras. Math. Res. Lett. 15(2), 239–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Panyushev, D., Yakimova, O.: Poisson-commutative subalgebras of \(\mathscr {S}({\mathfrak{g}})\) associated with involutions. arXiv:1809.00350v1 [math.RT]

  38. Tarasov, A.A.: The maximality of certain commutative subalgebras in the Poisson algebra of a semisimple Lie algebra. Russ. Math. Surv. 57(5), 1013–1014 (2002)

    Article  MATH  Google Scholar 

  39. Thompson, R.C.: Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl. 147, 323–371 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vinberg, E.B.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR-Izv 36, 1–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vinberg, E.B.: Commutative homogeneous spaces and co-isotropic symplectic actions. Uspekhi Mat. Nauk 56(1(337)), 3–62 (2001). English translation in Russian Math. Surveys, 56(1), 1–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vinberg, E.B., Kimelfeld, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funktsional. Anal. i Pril. 12(3), 12–19 (1978). English translation in Functional Anal. Appl., 12(3), 168–174 (1978)

    MathSciNet  Google Scholar 

  43. Винберг, Э.Б., Попов, В.Л. “Теория Инвариантов”, В: Соврем. пробл. математики. Фундаментальные направл., т. 55, стр. 137–309. Москва: ВИНИТИ 1989 (Russian). English translation: Popov, V.L., Vinberg, E.B.: “Invariant theory”, In: Algebraic Geometry IV, Encyclopaedia Math. Sci., vol. 55, pp.123–284. Springer, New York (1994)

  44. Vinberg, E.B., Yakimova, O.S.: Complete families of commuting functions for coisotropic Hamiltonian actions. Adv. Math. 348, 523–540 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yakimova, O.: The centralisers of nilpotent elements in classical Lie algebras. Funct. Anal. Appl. 40(1), 42–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yakimova, O.: Surprising properties of centralisers in classical Lie algebras. Ann. Inst. Fourier (Grenoble) 59(3), 903–935 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yakimova, O.: One-parameter contractions of Lie–Poisson brackets. J. Eur. Math. Soc. 16, 387–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zorin, A.A.: On the commutativity of the centralizer of a subalgebra in a universal enveloping algebra. Funktsional. Anal. i Pril. 43(2), 47–63 (2009). English translation in Funct. Anal. Appl., 43(2), 119–131 (2009)

Download references

Acknowledgements

We are grateful to the anonymous referee for the detailed report and important suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri I. Panyushev.

Additional information

To the memory of Bertram Kostant

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author was supported by the Russian Foundation for Sciences. The second author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number 330450448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyushev, D.I., Yakimova, O.S. Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties. Math. Z. 295, 101–127 (2020). https://doi.org/10.1007/s00209-019-02357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02357-y

Keywords

Mathematics Subject Classification

Navigation