Skip to main content
Log in

Algebraic Hamiltonian actions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we deal with a Hamiltonian action of a reductive algebraic group G on an irreducible normal affine Poisson variety X. We study the quotient morphism \({\mu_{G,X}//G : X//G \rightarrow \mathfrak{g} //G}\) of the moment map \({\mu_{G,X} : X\rightarrow \mathfrak{g}}\) . We prove that for a wide class of Hamiltonian actions (including, for example, actions on generically symplectic varieties) all fibers of the morphism μ G,X //G have the same dimension. We also study the “Stein factorization” of μ G,X //G. Namely, let C G,X denote the spectrum of the integral closure of \({\mu_{G,X}^{*}(\mathbb{K}[\mathfrak{g}]^G)}\) in \({\mathbb{K}(X)^G}\) . We investigate the structure of the \({\mathfrak{g} //G}\) -scheme C G,X . Our results partially generalize those obtained by F. Knop for the actions on cotangent bundles and symplectic vector spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I., Givental, A.B.: Symplectic geometry. Itogi nauki i techniki. Sovr. probl. matem. Fund. napr., 4, 7-140. VINITI, Moscow, 1985 (in Russian). English translation in: “Dynamical Systems IV”, Encyclopaedia of Mathematical Sciences, 4. Springer Verlag, Berlin (1990)

  2. Bourbaki, N.: Groupes et algèbres de Lie. Chap. 7,8. Hermann, Paris (1975)

  3. Cannas de Silva, A., Weinstein, A.: Geometric models for noncommutative algebras. Berkeley Math. Lecture Notes AMS (1999)

  4. Chevalley, C.: Foundaments de la géométrie algébrique. Paris (1958)

  5. Danilov, V.I.: Algebraic varieties and schemes. Itogi nauki i techniki. Sovr. probl. matem. Fund. napr., 23, 172-302. VINITI, Moscow (1988) (in Russian). English translation in: Algebraic geometry 1, Encyclopaedia of Mathematical Sciences, 23, Springer Verlag, Berlin (1994)

  6. Grosshans F.: The invariants of unipotent radicals of parabolic subgroups. Invent. Math. 73, 1–9 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guillemin V., Sternberg Sh.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  8. Kaledin D.: Normalization of a Poisson algebra is Poisson. Proc. Steklov Inst. Math. 264, 70–73 (2009)

    Article  Google Scholar 

  9. Kirwan F.: Convexity properties of the moment mapping III. Invent. Math. 77, 547–552 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Knop F.: Weylgruppe und Momentabbildung. Invent. Math. 99, 1–23 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Knop F.: The assymptotic behaviour of invariant collective motion. Invent. Math. 114, 309–328 (1994)

    Article  MathSciNet  Google Scholar 

  12. Knop, F.: Weyl groups of Hamiltonian manifolds, I. Preprint. arXiv.math.dg-ga/9712010 (1997)

  13. Knop F.: A connectedness property of algebraic moment maps. J. Algebra 258, 122–136 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Knop F.: Invariant functions on symplectic representations. J. Algebra 313, 223–251 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kraft H.: Geometrishe Methoden in der Invarianttheorie. Viewveg, Braunschweig/Wiesbaden (1985)

    Google Scholar 

  16. Lang, S.: Algebra, 3rd edn. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  17. Losev, I.: On fibers of algebraic invariant moment maps. Preprint, arXiv:math/0703296. Accepted by Transform. Groups

  18. Milne J.: Etale cohomolgy. Princeton Math. Series, vol. 33. Pricenton University Press, Princeton (1980)

    Google Scholar 

  19. Marsden J., Weinstein A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Polishchuk A.: Algebraic geometry of Poisson brackets. J. Math. Sci. 84, 1413–1444 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Popov, V.L.: Stability criteria for the action of a semisimple group on a factorial manifold. Izv. Akad. Nauk. SSSR, Ser. Mat. 34, 523–531 (1970). English translation in: Math. USSR, Izv. 4, 527–535 (1971)

    Google Scholar 

  22. Popov, V.L., Vinberg, E.B.: On a class of homogeneous affine varieties. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 749–764 (1972) (in Russian). English translation: Math. USSR, Izv. 6, 743–758 (1973)

    Google Scholar 

  23. Popov, V.L., Vinberg, E.B.: Invariant theory. Itogi nauki i techniki. Sovr. probl. matem. Fund. napr., 55. VINITI, Moscow, 137–309 (1989) (in Russian). English translation in: Algebraic geometry 4, Encyclopaedia of Mathematical Sciences, 55. Springer, Berlin (1994)

  24. Sumihiro H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)

    MATH  MathSciNet  Google Scholar 

  25. Timashev, D.A.: Equivariant symplectic geometry of cotangent bundles II. Preprint. arXiv:math. AG/0502284 (2004)

  26. Vinberg E.B.: Invariant linear connections on a homogeneous space. Tr. Moskov. Mat. Obshch. 9, 191–210 (1960)

    MathSciNet  Google Scholar 

  27. Vinberg E.B.: Equivariant symplectic geometry of cotangent bundles. Mosc. Math. J. 1, 287–299 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Vinberg, E.B.: Commutative homogeneous spaces and coisotropic symplectic actions. Usp. Mat. Nauk 56, 3–62 (2001) (in Russian). English translation in: Russ. Math. Surveys 56, 1–60 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Losev.

Additional information

Supported by RFBR grant 05-01-00988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losev, I.V. Algebraic Hamiltonian actions. Math. Z. 263, 685–723 (2009). https://doi.org/10.1007/s00209-009-0587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0587-7

Keywords

Mathematics Subject Classification (2000)

Navigation