Skip to main content
Log in

On the action of symplectic automorphisms on the \(\mathrm{CH}_0\)-groups of some hyper-Kähler fourfolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that for any polarized symplectic automorphism of the Fano variety of lines of a smooth cubic fourfold (equipped with the Plücker polarization), the induced action on the Chow group of 0-cycles is identity, as predicted by Bloch–Beilinson conjecture. We also prove the same result for the Chow group of homologically trivial 2-cycles up to torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the scheme-theoretic language, \(F(X)\) is defined to be the zero locus of \(s_T\in H^0\left( \mathop {\mathrm{Gr}}\nolimits (\mathop {\mathbf{P}}\nolimits ^1, \mathop {\mathbf{P}}\nolimits ^5), \mathop {\mathrm{Sym}}\nolimits ^3S^{\vee }\right) \), where \(S\) is the universal tautological subbundle on the Grassmannian, and \(s_T\) is the section induced by \(T\) using the morphism of vector bundles \(\mathop {\mathrm{Sym}}\nolimits ^3V^{\vee }\otimes {\fancyscript{O}}\rightarrow \mathop {\mathrm{Sym}}\nolimits ^3 S^{\vee }\) on \(\mathop {\mathrm{Gr}}\nolimits (\mathop {\mathbf{P}}\nolimits ^1, \mathop {\mathbf{P}}\nolimits ^5)\).

  2. In fact easier, because we do not need to invoke Roitman theorem.

  3. For rational coefficients it can be easily deduced by the argument in [13].

  4. Recall that we are allowed to shrink \(B\) whenever we want, see Remark 4.2.

  5. Here \({\tau ^o}^*\) is well-defined cause \(W^o\) and \({\fancyscript{X}}\times _B{\fancyscript{X}}\) are both smooth.

References

  1. Altman, A.B., Kleiman, S.L.: Foundations of the theory of Fano schemes. Compos. Math. 34(1), 3–47 (1977)

    MATH  MathSciNet  Google Scholar 

  2. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17. Société Mathématique de France, Paris (2004)

  3. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

  4. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Beĭlinson, A.A.: Height Pairing Between Algebraic Cycles, \(K\)-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, pp. 1–25 (1987)

  6. Bloch, S.: Lectures on Algebraic Cycles, Second ed., New Mathematical Monographs, vol. 16. Cambridge University Press, Cambridge (2010)

  7. Bloch, S., Kas, A., Lieberman, D.: Zero cycles on surfaces with \(p\_{g}=0\). Compos. Math. 33(2), 135–145 (1976)

    MATH  MathSciNet  Google Scholar 

  8. Bloch, S., Srinivas, V.: Remarks on correspondences and algebraic cycles. Am. J. Math. 105(5), 1235–1253 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Charles, F.: A remark on the Torelli theorem for cubic fourfolds, preprint. arXiv:1209.4509

  10. Chow, W.-L.: On the geometry of algebraic homogeneous spaces. Ann. Math. (2) 50, 32–67 (1949)

    Article  MATH  Google Scholar 

  11. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    Google Scholar 

  12. Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math. no. 35, 259–278 (1968)

  13. Esnault, H., Levine, M., Viehweg, E.: Chow groups of projective varieties of very small degree. Duke Math. J. 87(1), 29–58 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fulton, W.: Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton, NJ (1993). The William H. Roever Lectures in Geometry

  15. Huybrechts, D.: Symplectic automorphisms of K3 surfaces of arbitrary finite order. Math. Res. Lett. 19(4), 947–951 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huybrechts, D., Kemeny, M.: Stable maps and Chow groups. Doc. Math. 18, 507–517 (2013)

    MATH  MathSciNet  Google Scholar 

  17. Jannsen, U.: Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991). In: Proceedings of the Symposium on Pure Mathematics, vol. 55, American Mathematical Society, Providence, RI, pp. 245–302 (1994)

  18. Kimura, S.-I.: Chow groups are finite dimensional, in some sense. Math. Ann. 331(1), 173–201 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shen M., Vial, C.: The Fourier transform for certain Hyperkähler fourfolds, To appear in Memoirs of the AMS

  20. Tian, Z., Zong, H.R.: One-cycles on rationally connected varieties. Compos. Math. 150(3), 396–408 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Voisin, C.: Hodge theory and complex algebraic geometry. II. In: Cambridge Studies in Advanced Mathematics, vol. 77. Cambridge University Press, Cambridge (2003). Translated from the French by Leila Schneps

  22. Voisin, C.: On the Chow ring of certain algebraic hyper-Kähler manifolds. Pure Appl. Math. Q. 4(3), part 2, pp. 613–649 (2008)

  23. Voisin, C.: Symplectic involutions of \(K3\) surfaces act trivially on \({CH}_0\). Doc. Math. 17, 851–860 (2012)

  24. Voisin, C.: The generalized Hodge and Bloch conjectures are equivalent for general complete intersections. Ann. Sci. Éc. Norm. Supér. (4) 46(3), 449–475 (2013)

  25. Voisin, C.: Bloch’s conjecture for Catanese and Barlow surfaces. J. Differ. Geom. 97(1), 149–175 (2014)

    MATH  MathSciNet  Google Scholar 

  26. Voisin, C.: Chow rings, Decomposition of the Diagonal, and the Topology of Families, Annals of Mathematics Studies, vol. 187. Princeton University Press, Princeton (2014)

    Book  Google Scholar 

  27. Zucker, S.: The Hodge conjecture for cubic fourfolds. Compos. Math. 34(2), 199–209 (1977)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to express my gratitude to my thesis advisor Claire Voisin for bringing to me this interesting subject as well as many helpful suggestions. I also want to thank Mingmin Shen for pointing out the connection of our result and his joint work with Charles Vial [19], which motivates the last section of the paper. Finally, I thank the referee for his or her very helpful suggestions which improved the paper a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lie Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L. On the action of symplectic automorphisms on the \(\mathrm{CH}_0\)-groups of some hyper-Kähler fourfolds. Math. Z. 280, 307–334 (2015). https://doi.org/10.1007/s00209-015-1424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1424-9

Keywords

Navigation