Skip to main content
Log in

Non-symplectic automorphisms of odd prime order on manifolds of \(K3^{\left[ n\right] }\)-type

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We contribute to the classification of non-symplectic automorphisms of odd prime order on irreducible holomorphic symplectic manifolds which are deformations of Hilbert schemes of any number n of points on K3 surfaces, extending results already known for \(n=2\). In particular, we study the properties of the invariant lattice of the automorphism (and its orthogonal complement) inside the second cohomology lattice of the manifold. We also explain how to construct automorphisms with fixed action on cohomology: in the cases \(n=3,4\) the examples provided realize all admissible actions in our classification. For \(n=4\), we present a construction of non-symplectic automorphisms on the Lehn–Lehn–Sorger–van Straten eightfold, which come from automorphisms of the underlying cubic fourfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addington, N., Lehn, M.: On the symplectic eightfold associated to a Pfaffian cubic fourfold. J. Reine Angew. Math. 731, 129–137 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of algebraic curves. In: Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], With a Contribution by Joseph Daniel Harris, vol. 268. Springer, Heidelberg (2011)

  3. Artebani, M., Sarti, A.: Non-symplectic automorphisms of order 3 on \(K3\) surfaces. Math. Ann. 342(4), 903–921 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Artebani, M., Sarti, A., Taki, S.: \(K3\) surfaces with non-symplectic automorphisms of prime order. With an appendix by Shigeyuki Kondō. Math. Z 268(1–2), 507–533 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bayer, A., Macrì, E.: Projectivity and birational geometry of Bridgeland moduli spaces. J. Am. Math. Soc. 27(3), 707–752 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Beauville, A.: Some remarks on Kähler manifolds with \(c_{1}=0\). In: Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39, Birkhäuser Boston, Boston, pp. 1–26 (1983)

  7. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1984)

    MATH  Google Scholar 

  8. Beauville, A.: Antisymplectic involutions of holomorphic symplectic manifolds. J. Topol. 4(2), 300–304 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension \(4\). C R Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)

    MathSciNet  MATH  Google Scholar 

  10. Boissière, S.: Automorphismes naturels de l’espace de Douady de points sur une surface. Can. J. Math. 64(1), 3–23 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Boissière, S., Camere, C., Mongardi, G., Sarti, A.: Isometries of ideal lattices and hyperkähler manifolds. Int. Math. Res. Not. IMRN 4, 963–977 (2016)

    MATH  Google Scholar 

  12. Boissière, S., Camere, C., Sarti, A.: Classification of automorphisms on a deformation family of hyper-Kähler four-folds by \(p\)-elementary lattices. Kyoto J. Math. 56(3), 465–499 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Boissière, S., Camere, C., Sarti, A.: Complex ball quotients from manifolds of \(K3^{[n]}\)-type. J. Pure Appl. Algebra 223(3), 1123–1138 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Boissière, S., Camere, C., Sarti, A.: Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball. Math. Ann. 373(3–4), 1429–1455 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Boissière, S., Nieper-Wißkirchen, M., Sarti, A.: Smith theory and irreducible holomorphic symplectic manifolds. J. Topol. 6(2), 361–390 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Boissière, S., Sarti, A.: A note on automorphisms and birational transformations of holomorphic symplectic manifolds. Proc. Am. Math. Soc. 140(12), 4053–4062 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Boissière, S., Nieper-Wißkirchen, M., Tari, K.: Some algebraic and geometric properties of hyper-Kähler fourfold symmetries. arXiv:1902.01685 (2019)

  18. Bridgeland, T.: Stability conditions on \(K3\) surfaces. Duke Math. J. 141(2), 241–291 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Brieskorn, E.: Die Milnorgitter der exzeptionellen unimodularen Singularitäten, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 150. Universität Bonn, Mathematisches Institut, Bonn (1983)

  20. Camere, C.: Symplectic involutions of holomorphic symplectic four-folds. Bull. Lond. Math. Soc. 44(4), 687–702 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Camere, C., Cattaneo, Al., Cattaneo, An.: Non-symplectic involutions of manifolds of \(K3^{[n]}\) type. To appear in Nagoya Mathematical Journal (2019)

  22. Camere, C., Kapustka, G., Kapustka, M., Mongardi, G.: Verra fourfolds, twisted sheaves and the last involution. Int. Math. Res. Not. 2019(21), 6661–6710 (2019)

    MATH  Google Scholar 

  23. Chow, W.-L.: On the geometry of algebraic homogeneous spaces. Ann. Math. 50(2), 32–67 (1949)

    MathSciNet  MATH  Google Scholar 

  24. Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95(2), 281–356 (1972)

    MathSciNet  MATH  Google Scholar 

  25. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, 3rd edn., With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Springer, New York (1999)

  26. de Jong, A.J., Starr, J.: Cubic fourfolds and spaces of rational curves. Ill. J. Math. 48(2), 415–450 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Debarre, O.: Higher-Dimensional Algebraic Geometry. Springer, New York (2001)

    MATH  Google Scholar 

  28. Dolgachev, I.: Integral quadratic forms: applications to algebraic geometry (after V. Nikulin), Bourbaki seminar, vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, pp. 251–278 (1983)

  29. Dolgachev, I., van Geemen, B., Kondō, S.: A complex ball uniformization of the moduli space of cubic surfaces via periods of \(K3\) surfaces. J. Reine Angew. Math. 588, 99–148 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Fu, L.: Classification of polarized symplectic automorphisms of Fano varieties of cubic fourfolds. Glasg. Math. J. 58(1), 17–37 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Fujiki, A.: On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, pp. 105–165 (1987)

  32. González-Aguilera, V., Liendo, A.: Automorphisms of prime order of smooth cubic \(n\)-folds. Arch. Math. (Basel) 97(1), 25–37 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Gritsenko, V., Hulek, K., Sankaran, G.K.: Moduli spaces of irreducible symplectic manifolds. Compos. Math. 146(2), 404–434 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Gross, M., Huybrechts, D., Joyce, D.: Calabi-Yau manifolds and related geometries. Lectures from the Summer School held in Nordfjordeid, Universitext, Springer, Berlin (2001)

  35. Huybrechts, D.: The global Torelli theorem: classical, derived, twisted, algebraic geometry—seattle 2005. In: Part 1, Proc. Sympos. Pure Math., vol. 80, Am. Math. Soc., Providence, RI, pp. 235–258 (2009)

  36. Huybrechts, D.: A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky], Astérisque, no. 348, Exp. No. 1040, x, 375–403, Séminaire Bourbaki: vol. 2010/2011. Exposés, pp. 1027–1042 (2012)

  37. Huybrechts, D.: Lectures on K3 Surfaces, vol. 158. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  38. Huybrechts, D., Stellari, P.: Equivalences of twisted \(K3\) surfaces. Math. Ann. 332(4), 901–936 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Iliev, A.: Minimal sections of conic bundles. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 2(2), 401–428 (1999)

    MathSciNet  MATH  Google Scholar 

  40. Jiang, Z., Lahoz, M., Tirabassi, S.: Characterization of products of theta divisors. Compos. Math. 150(8), 1384–1412 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Joumaah, M.: Automorphisms of irreducible symplectic manifolds. PhD Thesis, Leibniz Universität Hannover (2015)

  42. Kneser, M.: Erzeugung ganzzahliger orthogonaler Gruppen durch Spiegelungen. Math. Ann. 255(4), 453–462 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Lehn, C., Lehn, M., Sorger, C., van Straten, D.: Twisted cubics on cubic fourfolds. J. Reine Angew. Math. 731, 87–128 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Lesieutre, J.: Some constraints of positive entropy automorphisms of smooth threefolds. Ann. Sci. Éc. Norm. Supér. 51(6), 1507–1547 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Macrì, E., Stellari, P.: Fano varieties of cubic fourfolds containing a plane. Math. Ann. 354(3), 1147–1176 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Markman, E.: Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a \(K3\) surface. Int. J. Math. 21(2), 169–223 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties. In: Complex and Differential Geometry, Proc. Math., vol. 8. Springer, Heidelberg, pp. 257–322 (2011)

  48. Matsumura, H., Monsky, P.: On the automorphisms of hypersurfaces. J. Math. Kyoto Univ. 3, 347–361 (1963)

    MathSciNet  MATH  Google Scholar 

  49. Miranda, R., Morrison, D.R.: Embeddings of Integral Quadratic Forms. http://web.math.ucsb.edu/~drm/manuscripts/eiqf.pdf

  50. Mongardi, G.: Symplectic involutions on deformations of \(\text{ K }3^{[2]}\). Cent. Eur. J. Math. 10(4), 1472–1485 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Mongardi, G.: Automorphisms of hyperkähler manifolds. PhD Thesis, Università degli Studi di Roma 3 (2013)

  52. Mongardi, G.: On natural deformations of symplectic automorphisms of manifolds of \(K3^{[n]}\) type. C R Math. Acad. Sci. Paris 351(13–14), 561–564 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Mongardi, G., Wandel, M.: Induced automorphisms on irreducible symplectic manifolds. J. Lond. Math. Soc. 92(1), 123–143 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Morrison, D.R.: On \(K3\) surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)

    MathSciNet  MATH  Google Scholar 

  55. Nikulin, V.V.: Finite groups of automorphisms of Kählerian \(K3\) surfaces. Trudy Moskov. Mat. Obshch. 38, 75–137 (1979)

    MathSciNet  MATH  Google Scholar 

  56. Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177 (1979)

    MathSciNet  MATH  Google Scholar 

  57. O’Grady, K.G.: Irreducible symplectic 4-folds and Eisenbud–Popescu–Walter sextics. Duke Math. J. 134(1), 99–137 (2006)

    MathSciNet  MATH  Google Scholar 

  58. Ohashi, H., Wandel, M.: Non-natural non-symplectic involutions on symplectic manifolds of \(K3^{[2]}\)-type. arXiv:1305.6353 (2013)

  59. Rudakov, A.N., Shafarevich, I.R.: Surfaces of type \(K3\) over fields of finite characteristic. In: Current Problems in Mathematics, vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, pp. 115–207 (1981)

  60. Scharlau, W.: Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270. Springer, Berlin (1985)

    Google Scholar 

  61. Shinder, E., Soldatenkov, A.: On the geometry of the Lehn–Lehn–Sorger–van Straten eightfold. Kyoto J. Math. 57(4), 789–806 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Tari, K.: Automorphismes des variétés de Kummer généralisées. PhD Thesis, Université de Poitiers (2015)

  63. Toda, Y.: Moduli stacks and invariants of semistable objects on \(K3\) surfaces. Adv. Math. 217(6), 2736–2781 (2008)

    MathSciNet  MATH  Google Scholar 

  64. van Geemen, B.: Some remarks on Brauer groups of \(K3\) surfaces. Adv. Math. 197(1), 222–247 (2005)

    MathSciNet  MATH  Google Scholar 

  65. Verbitsky, M.: Mapping class group and a global Torelli theorem for hyperkähler manifolds. Appendix A by Eyal Markman. Duke Math. J. 162(15), 2929–2986 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Voisin, C.: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, K3 surfaces and their moduli, Progr. Math., vol. 315, Birkhäuser/. Springer, Cham, pp. 365–399 (2016)

  67. Yoshioka, K.: Moduli spaces of twisted sheaves on a projective variety. In: Moduli Spaces and Arithmetic Geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, pp. 1–30 (2006)

Download references

Acknowledgements

Alberto Cattaneo is grateful to Max Planck Institute for Mathematics in Bonn for its hospitality and financial support. The authors thank Samuel Boissière, Simon Brandhorst, Andrea Cattaneo, Alice Garbagnati, Robert Laterveer and Giovanni Mongardi for many helpful discussions, as well as Christian Lehn, Manfred Lehn and Gregory Sankaran for their useful remarks and explanations. The authors are also extremely grateful to Alessandra Sarti and Bert van Geemen for their precious suggestions, and to the anonymous referee for many valuable comments on how to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Camere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Invariant and co-invariant lattices for \(n=3,4\), \(p=3\)

Appendix A: Invariant and co-invariant lattices for \(n=3,4\), \(p=3\)

The two tables in this appendix list all admissible triples (pma) (see Definition 3.10) and the corresponding isometry classes for the co-invariant lattice \(S \subset H^2(X, \mathbb {Z})\) and the invariant lattice \(T \subset H^2(X, \mathbb {Z})\) of non-symplectic automorphisms of order \(p = 3\) on manifolds X of \(K3^{[n]}\)-type, for \(n = 3, 4\). This classification is discussed in Sect. 3.4.

The symbol \(\clubsuit \) denotes the cases which can be realized by natural automorphisms (see Sect. 4.1). The cases marked with \(\natural \) (respectively, \(\diamondsuit \)) correspond to admissible triples that admit a realization by induced automorphisms on moduli spaces of ordinary (respectively, twisted) sheaves on K3 surfaces, but not by natural automorphisms (see Sect. 5). Finally, the admissible triple (3, 11, 0) for \(n=4\) (marked with the symbol \(\bigstar \)) is realized by the automorphism constructed in Sect. 6.1 on a ten-dimensional family of Lehn–Lehn–Sorger–van Straten eightfolds (see also Sect. 4.3).

We recall that in the following tables, as in the rest of the paper, the root lattices \(A_2, E_6, E_8\) are defined as negative definite.

Table 1 \(n=3\), \(p=3\). See Sect. 3.4 for the definition of the lattice \(\Omega \)
Table 2 \(n = 4\), \(p = 3\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camere, C., Cattaneo, A. Non-symplectic automorphisms of odd prime order on manifolds of \(K3^{\left[ n\right] }\)-type. manuscripta math. 163, 299–342 (2020). https://doi.org/10.1007/s00229-019-01163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01163-4

Mathematics Subject Classification

Navigation