Skip to main content
Log in

On Harnack inequality for α-stable Ornstein–Uhlenbeck processes

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the α-stable Ornstein–Uhlenbeck process in \({\mathbb{R}}^d\) with the generator \(L = \Delta^{\alpha/2} - \lambda x \cdot\nabla_x\) . We show that if 2 > α ≥ 1 or α < 1 = d the Harnack inequality holds. For α < 1 < d we construct a counterexample that shows that the Harnack inequality does not hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass R.F., Levin D.A. (2002). Harnack inequalities for jump processes. Potential Anal. 17(4): 375–388

    Article  MATH  MathSciNet  Google Scholar 

  2. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. vol. 29, Pure and Applied Mathematics, Academic, New York (1968)

  3. Bogdan K., Byczkowski T. (1999). Probabilistic proof of boundary Harnack principle for α-harmonic functions. Potential Anal. 11(2): 135–156

    Article  MATH  MathSciNet  Google Scholar 

  4. Bogdan K., Stós A., Sztonyk P. (2003). Harnack inequality for stable processes on d-sets. Studia Math. 158(2): 163–198

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen Z.-Q., Fitzsimmons P.J., Takeda M., Ying J., Zhang T.-S. (2004). Absolute continuity of symmetric Markov processes. Ann. Probab. 32(3A): 2067–2098

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Z.-Q., Kumagai T. (2003). Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108(1): 27–62

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen Z.-Q., Song R. (2003). Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201(1): 262–281

    Article  MATH  MathSciNet  Google Scholar 

  8. Chung K.L., Zhao Z.X. (1995). From Brownian motion to Schrödinger’s equation, vol. 312, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin

    Google Scholar 

  9. Hebisch W., Saloff-Coste L. (2001). On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier (Grenoble) 51(5): 1437–1481

    MATH  MathSciNet  Google Scholar 

  10. Ikeda N., Watanabe S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2: 79–95

    MATH  MathSciNet  Google Scholar 

  11. Jakubowski, T.: The estimates of the mean first exit time from a ball for the α-stable Ornstein–Uhlenbeck processes. Stoch. Process. Appl. (to appear)

  12. Janicki A., Weron A. (1994). Simulation and chaotic behavior of α-stable stochastic processes, vol. 178, Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York

    Google Scholar 

  13. Samorodnitsky, G., Taqqu, M.S.: Stable non-Gaussian random processes (Stochastic models with infinite variance). Stochastic Modeling. Chapman & Hall, New York (1994)

  14. Song R., Vondraček Z. (2004). Harnack inequality for some classes of Markov processes. Math. Z. 246(1–2): 177–202

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Jakubowski.

Additional information

Partially supported by KBN and MEN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubowski, T. On Harnack inequality for α-stable Ornstein–Uhlenbeck processes. Math. Z. 258, 609–628 (2008). https://doi.org/10.1007/s00209-007-0188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0188-2

Keywords

Mathematics Subject Classification (2000)

Navigation