Skip to main content
Log in

How Violent are Fast Controls for Schrödinger and Plate Vibrations?

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

Given a time T>0 and a region Ω on a compact Riemannian manifold M, we consider the best constant, denoted C T,Ω , in the observation inequality for the Schrödinger evolution group of the Laplacian Δ with Dirichlet boundary condition: We investigate the influence of the geometry of Ω on the growth of C T,Ω as T tends to 0.

By duality, C T,Ω is also the controllability cost of the free Schrödinger equation on M with Dirichlet boundary condition in time T by interior controls on Ω. It relates to hinged vibrating plates as well. We analyze separately the effects of wavelengths which are greater and lower than the order of the control time T. We emphasize a tool of wider scope: the control transmutation method.

We prove that C T,Ω grows at least like exp(d 2/4T), where d is the largest distance of a point in M from Ω, and at most like exp(α* L Ω 2/T), where L Ω is the length of the longest generalized geodesic in M which does not intersect Ω, and α* ∈]0,4[ is the best constant in the following inequality for the Schrödinger equation on the segment [0,L] observed from the left end: where A is the operator ∂ x 2 with domain D(A)={fH 2(0,L),|,Bf(0)=0=f(L)} and the inequality holds with B=1 and with B=∂ x . We also deduce such upper bounds on product manifolds for some control regions which are not intersected by all geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allibert, B.: Contrôle analytique de l’équation des ondes et de l’équation de Schrödinger sur des surfaces de revolution. Comm. Partial Differential Equations 23, 1493–1556 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Boutet~de Monvel, L.: Propagation des singularités des solutions d’équations analogues à l’équation de Schrödinger. In: Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., Vol. 459. Springer, Berlin, 1975, pp. 1–14

  3. Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci., Paris, Ser. I, Math. 25, 749–752 (1997)

    Google Scholar 

  4. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Baudouin, L., Puel, J.-P.: Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems 18, 1537–1554 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burq, N.: Contrôlabilité exacte de l’équation des ondes dans des ouverts peu réguliers. Asymptotic Anal. 14, 157–191 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Burq, N.: Mesures semi-classiques et mesures de défaut. Astérisque 245, 167–195 (1997) Séminaire Bourbaki, Vol. 1996/97, Exp. No. 826

    MathSciNet  MATH  Google Scholar 

  8. Burq, N., Zworski, M.: Control in the presence of a black box. J. Amer. Math. Soc. 17, 443–471 (2004)

    Article  Google Scholar 

  9. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom. 17, 15–53 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Dolecki, S., Russell, D.L.: A general theory of observation and control. SIAM J. Control Optimization 15, 185–220 (1977)

    MATH  Google Scholar 

  11. Fabre, C.: Résultats de contrôlabilité exacte interne pour l’équation de Schrödinger et leurs limites asymptotiques: application à certaines équations de plaques vibrantes. Asymptotic Anal. 5, 343–379 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Haraux, A.: Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire. J. Math. Pures Appl. (9) 68, 457–465 (1989)

    Google Scholar 

  13. Hersh, R.: The method of transmutations. In: Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), Lecture Notes in Math., Vol. 446. Springer, Berlin, 1975, pp. 264–282

  14. Horn, M.A., Littman, W.: Boundary control of a Schrödinger equation with nonconstant principal part. In: Control of partial differential equations and applications (Laredo, 1994), volume~174 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 1996, pp. 101–106

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators. volume~III. Springer, 1985

  16. Jaffard, S.: Contrôle interne exact des vibrations d’une plaque rectangulaire. Portugal. Math. 47, 423–429 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Jerison, D., Lebeau, G.: Nodal sets of sums of eigenfunctions. In: Harmonic analysis and partial differential equations (Chicago, IL, 1996), Univ. Chicago Press, Chicago, IL, 1999, pp. 223–239

  18. Jaffard, S., Micu, S.: Estimates of the constants in generalized Ingham’s inequality and applications to the control of the wave equation. Asymptot. Anal. 28, 181–214 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Krabs, W., Leugering, G., Seidman, T.I.: On boundary controllability of a vibrating plate. Appl. Math. Optim. 13, 205–229 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Komornik, V.: On the exact internal controllability of a Petrowsky system. J. Math. Pures Appl. (9) 71, 331–342 (1992)

    Google Scholar 

  21. Kapitanski, L., Safarov, Y.: Dispersive smoothing for Schrödinger equations. Math. Res. Lett. 3, 77–91 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Lebeau, G.: Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. (9) 71, 267–291 (1992)

    Google Scholar 

  23. Lasiecka, I., Triggiani, R.: Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control. Differential Integral Equations 5, 521–535 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Littman, W., Taylor, S.: Smoothing evolution equations and boundary control theory. J. Anal. Math. 59, 117–131 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative Schrödinger equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot. In: V. Barbu, et~al. (eds), Analysis and Optimization of Differential Systems. Kluwer, 2003

  26. Lebeau, G., Zuazua, E.: Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141, 297–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Machtyngier, E.: Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32, 24–34 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Miller, L.: Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. arXiv:math.AP/0307158, preprint, 2003

  29. Phung, K.-D.: Observability and control of Schrödinger equations. SIAM J. Control Optim. 40, 211–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Methods of modern mathematical physics. I,II,III,IV. Academic Press Inc., New York, 1972, 1975, 1978, 1979

  31. Seidman, T.I., Avdonin, S.A., Ivanov, S.A.: The ‘‘window problem’’ for series of complex exponentials. J. Fourier Anal. Appl. 6, 233–254 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Schatten, R.: A Theory of Cross-Spaces. Annals of Mathematics Studies, no. 26. Princeton University Press, Princeton, NJ, 1950

  33. Seidman, T.I.: Two results on exact boundary control of parabolic equations. Appl. Math. Optim. 11, 145–152 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Seidman, T.I.: The coefficient map for certain exponential sums. Nederl. Akad. Wetensch. Indag. Math. 48, 463–478 (1986)

    MathSciNet  MATH  Google Scholar 

  35. Seidman, T.I.: How violent are fast controls? Math. Control Signals Systems 1(1), 89–95 (1988)

    MATH  Google Scholar 

  36. Seidman, T.I., Gowda, M.S.: Norm dependence of the coefficient map on the window size. Math. Scand. 73, 177–189 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Seidman, T.I., Yong, J.: How violent are fast controls? II. Math. Control Signals Systems 9, 327–340 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Tataru, D.: Carleman estimates, unique continuation and controllability for anizotropic PDEs. In: Optimization methods in partial differential equations (South Hadley, MA, 1996), volume~209 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1997, pp. 267–279

  39. Triggiani, R., Yao, P.-F.: Inverse/observability estimates for Schrödinger equations with variable coefficients. Control Cybernet 28, 627–664 (1999) Recent advances in control of PDEs

    MathSciNet  MATH  Google Scholar 

  40. Zhang, X.: Exact controllability of semilinear plate equations. Asymptot. Anal. 27, 95–125 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Zuazua, E.: Contrôlabilité exacte en temps arbitrairement petit de quelques modèles de plaques. In: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. (J.-L. Lions), volume~8 of R. M. A. Masson, 1988, Appendix~1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Miller.

Additional information

Communicated by P.-L. Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, L. How Violent are Fast Controls for Schrödinger and Plate Vibrations?. Arch. Rational Mech. Anal. 172, 429–456 (2004). https://doi.org/10.1007/s00205-004-0312-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0312-y

Keywords

Navigation