Skip to main content
Log in

The uniqueness of inverse problems for a fractional equation with a single measurement

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This article is concerned with an inverse problem on simultaneously determining some unknown coefficients and/or an order of derivative in a multidimensional time-fractional evolution equation either in a Euclidean domain or on a Riemannian manifold. Based on a special choice of the Dirichlet boundary input, we prove the unique recovery of at most two out of four \(\varvec{x}\)-dependent coefficients (possibly with an extra unknown fractional order) by a single measurement of the partial Neumann boundary output. Especially, both a vector-valued velocity field of a convection term and a density can also be uniquely determined. The key ingredient turns out to be the time-analyticity of the decomposed solution, which enables the construction of Dirichlet-to-Neumann maps in the frequency domain and thus the application of inverse spectral results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis. J. Water Resour. 28(12), 3293–3307 (1992)

    Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Avdonin, S., Seidman, T.: Identification of \(q(x)\) in \(u_t=\Delta u-q u\) from boundary observations. SIAM J. Control Optim. 33(4), 1247–1255 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Belishev, M.: An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR 297(3), 524–527 (1987)

    MathSciNet  Google Scholar 

  6. Belishev, M., Kurylev, Y.: To the reconstruction of a Riemannian manifold via its spectral data (BC-method). Commun. PDE 17(5–6), 767–804 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Canuto, B., Kavian, O.: Determining coefficients in a class of heat equations via boundary measurements. SIAM J. Math. Anal. 32(5), 963–986 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Canuto, B., Kavian, O.: Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7(1), 207–230 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Carcione, J., Sanchez-Sesma, F., Luzón, F., Perez Gavilán, J.: Theory and simulation of time-fractional fluid diffusion in porous media. J. Phys. A 46(34), 345501 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Caro, P., Kian, Y.: Determination of convection terms and quasi-linearities appearing in diffusion equations (2018). arXiv:1812.08495

  11. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one dimensional fractional diffusion equation. Inverse Probl. 25(11), 115002 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, J., Yamamoto, M.: The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions. Inverse Probl. 16(3), L25–L30 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Cheng, J., Yamamoto, M.: Identification of convection term in a parabolic equation with a single measurement. Nonlinear Anal. 50(2), 163–171 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Cheng, J., Yamamoto, M.: Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case. SIAM J. Math. Anal. 35(6), 1371–1393 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Choulli, M.: Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  16. Choulli, M., Kian, Y.: Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term. J. Math. Pures Appl. 114, 235–261 (2018)

    MathSciNet  MATH  Google Scholar 

  17. El Badia, A.: Identifiabilité d’un coefficient variable en espace dans une équation parabolique. M2AN Math. Model. Numer. Anal. 21(4), 627–639 (1987)

    MATH  Google Scholar 

  18. Fujishiro, K., Kian, Y.: Determination of time dependent factors of coefficients in fractional diffusion equations. Math. Control Relat. Fields 6(2), 251–269 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001)

    MATH  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  21. Helin, T., Lassas, M., Ylinen, L., Zhang, Z.: Inverse problems for heat equation and space-time fractional diffusion equation with one measurement. J. Differ. Equ. 269(9), 7498–7528 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Jiang, D., Li, Z., Liu, Y., Yamamoto, M.: Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations. Inverse Probl. 33(5), 055013 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Katchalov, A., Kurylev, Y., Lassas, M.: Inverse Boundary Spectral Problems. Chapman & Hall/CRC, Boca Raton (2001)

    MATH  Google Scholar 

  24. Katchalov, A., Kurylev, Y., Lassas, M.: Equivalence of time-domain inverse problems and boundary spectral problem. Inverse Probl. 20(2), 419–436 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Kian, Y., Kurylev, Y., Lassas, M., Oksanen, L.: Unique recovery of lower order coefficients for hyperbolic equations from data on disjoint sets. J. Differ. Equ. 267(4), 2210–2238 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Kian, Y., Oksanen, L., Soccorsi, É., Yamamoto, M.: Global uniqueness in an inverse problem for time-fractional diffusion equations. J. Differ. Equ. 264(2), 1146–1170 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Kian, Y., Soccorsi, É., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincaré 19(12), 3855–3881 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Kian, Y., Yamamoto, M.: On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Kian, Y., Yamamoto, M.: Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations. Inverse Probl. 35(11), 115006 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Krupchyk, K., Uhlmann, G.: Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential. Comm. Math. Phys. 327(3), 993–1009 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Lassas, M., Oksanen, L.: Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets. Duke Math. J. 163(6), 1071–1103 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Li, Z., Imanuvilov, O.Y., Yamamoto, M.: Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 32(1), 015004 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Li, Z., Kian, Y., Soccorsi, É.: Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Li, Z., Liu, Y., Yamamoto, M.: Inverse problems of determining parameters of the fractional partial differential equations. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, Volume 2: Fractional Differential Equation, pp. 431–442. De Gruyter, Berlin (2019)

  35. Li, Z., Yamamoto, M.: Inverse problems of determining coefficients of the fractional partial differential equations. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, Volume 2: Fractional Differential Equations, pp. 443–463. De Gruyter, Berlin (2019)

    Google Scholar 

  36. Liu, Y., Li, Z., Yamamoto, M.: Inverse problems of determining sources of the fractional partial differential equations. In: Kochubei, A., Luchko, Y. (eds.) Handbook of Fractional Calculus with Applications, Volume 2: Fractional Differential Equations, pp. 411–430. De Gruyter, Berlin (2019)

    Google Scholar 

  37. Luchko, Y.: Initial-boundary value problems for the generalized time-fractional diffusion equation. In: Proceedings of 3rd IFAC Workshop on Fractional Differentiation and Its Applications (FDA08), Ankara, Turkey, 05–07 November 2008 (2008)

  38. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  40. Pohjola, V.: A uniqueness result for an inverse problem of the steady state convection-diffusion equation. SIAM J. Math. Anal. 47(3), 2084–2103 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  42. Roman, H.E., Alemany, P.A.: Continuous-time random walks and the fractional diffusion equation. J. Phys. A 27(10), 3407–3410 (1994)

    MathSciNet  MATH  Google Scholar 

  43. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Philadelphia (1993)

    MATH  Google Scholar 

  45. Salo, M.: Inverse problems for nonsmooth first order perturbations of the Laplacian. Ph.D. Thesis, University of Helsinki (2004)

  46. Soccorsi, É., Multidimensional Borg-Levinson inverse spectral theory (2019). arXiv:1911.09460

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments. This work is partly supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP15H05740. The first author is partially supported by the French National Research Agency ANR (project MultiOnde) grant ANR-17-CE40-0029. The second author is supported by National Natural Science Foundation of China (NSFC) (No. 11801326). The third author is supported by JSPS KAKENHI Grant Number JP20K14355. The fourth author is partly supported by NSFC (Nos. 11771270, 91730303). This work was prepared with the support of the “RUDN University Program 5-100”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikan Liu.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, Y., Li, Z., Liu, Y. et al. The uniqueness of inverse problems for a fractional equation with a single measurement. Math. Ann. 380, 1465–1495 (2021). https://doi.org/10.1007/s00208-020-02027-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02027-z

Mathematics Subject Classification

Navigation