Skip to main content
Log in

Homeomorphic extension of quasi-isometries for convex domains in \({\mathbb {C}}^d\) and iteration theory

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the homeomorphic extension of biholomorphisms between convex domains in \({\mathbb {C}}^d\) without boundary regularity and boundedness assumptions. Our approach relies on methods from coarse geometry, namely the correspondence between the Gromov boundary and the topological boundaries of the domains and the dynamical properties of commuting 1-Lipschitz maps in Gromov hyperbolic spaces. This approach not only allows us to prove extensions for biholomorphisms, but for more general quasi-isometries between the domains endowed with their Kobayashi distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M.: Horospheres and iterates of holomorphic maps. Math. Z. 198(2), 225–238 (1988)

    Article  MathSciNet  Google Scholar 

  2. Abate, M.: Iteration theory on weakly convex domains. Seminars in complex analysis and geometry, 1988 (Arcavacata, 1988), 1-16, Sem. Conf., 4, EditEl, Rende, (1990)

  3. Abate, M.: Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex analysis and geometry, Mediterranean Press, Rende, (1989)

  4. Abate, M.: Iteration theory, compactly divergent sequences and commuting holomorphic maps. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18(2), 167–191 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Abate, M., Heinzner, P.: Holomorphic actions on contractible domains without fixed points. Math. Z. 211(4), 547–555 (1992)

    Article  MathSciNet  Google Scholar 

  6. Abate, M., Raissy, J.: Wolff-Denjoy theorems in nonsmooth convex domains. Ann. Mat. Pura Appl. (4) 193, 1503–1518 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature, Progress in Mathematics 61. Birkhäuser, Boston (1985)

    Book  Google Scholar 

  8. Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Comment. Math. Helv. 75, 504–533 (2000)

    Article  MathSciNet  Google Scholar 

  9. Barth, T.J.: Convex domains and Kobayashi hyperbolicity. Proc. Am. Math. Soc. 79, 556–558 (1980)

    Article  MathSciNet  Google Scholar 

  10. Bedford, E., Pinchuk, S.: Convex domains with non-compact automorphism group, (translated from Russian). Russ. Acad. Sci. Sb. Math. 82, 1–20 (1995)

    Google Scholar 

  11. Behan, D.F.: Commuting analytic functions without fixed points. Proc. Am. Math. Soc. 37, 114–120 (1973)

    Article  MathSciNet  Google Scholar 

  12. Bracci, F.: Common fixed points of commuting holomorphic maps in the unit ball of \(\mathbb{C}^n\). Proc. Am. Math. Soc. 127, 1133–1141 (1999)

    Article  Google Scholar 

  13. Bracci, F.: Commuting holomorphic maps in strongly convex domains. Ann. Scuola Norm. Sup. di Pisa, Cl. Sci. (4) 27(1), 131–144 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Bracci, F.: Fixed points of commuting holomorphic maps without boundary regularity. Canadian Math. Bull. 43(4), 294–303 (2000)

    Article  MathSciNet  Google Scholar 

  15. Bracci, F., Gaussier, H.: Horosphere Topology, Ann. Scuola Norm. Sup. di Pisa, Cl. Sci. https://doi.org/10.2422/2036-2145.201710_004

  16. Bracci, F., Gaussier, H.: A proof of the Muir-Suffridge conjecture for convex maps of the unit ball in \({\mathbb{C}}^n\). Math. Ann. 372(1–2), 845–858 (2018)

    Article  MathSciNet  Google Scholar 

  17. Bracci, F., Saracco, A.: Hyperbolicity in unbounded convex domains. Forum Math. 21, 815–825 (2009)

    Article  MathSciNet  Google Scholar 

  18. Bridson, M., Haefliger, A.: Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

    Google Scholar 

  19. Budzyńska, M.: The Denjoy–Wolff theorem in \(\mathbb{C}^n\). Nonlinear Anal. 75, 22–29 (2012)

    Article  MathSciNet  Google Scholar 

  20. Capogna, L., Le Donne, E.: Conformal equivalence of visual metrics in pseudo convex domains, preprint (2017)

  21. Coornaert, M., Delzant, T., Papadopoulos, A.: Géométrie et théorie des groupes, Les groupes hyperboliques de Gromov, Lectures Notes in Math. 1441, Springer

  22. Deng, F., Guan, Q., Zhang, L.: Properties of squeezing functions and global transformations of bounded domains. Trans. Am. Math. Soc. 368(4), 2679–2696 (2016)

    Article  MathSciNet  Google Scholar 

  23. Denjoy, A.: Sur l’itération des fonctions analytiques. C.R. Acad. Sci. Paris 182, 255–257 (1926)

    MATH  Google Scholar 

  24. Diederich, K., Fornæss, J.E., Wold, E.F.: Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type. J. Geom. Anal. 24(4), 2124–2134 (2014)

    Article  MathSciNet  Google Scholar 

  25. Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)

    Article  MathSciNet  Google Scholar 

  26. Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure, In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), vol. 52 of Proc. Sympos. Pure Math., pages 183–208. Amer. Math. Soc., Providence, RI, (1991)

  27. Freudenthal, H.: Über die Enden topologischer Räume und Gruppen. Math. Z. 33, 692–713 (1931)

    Article  MathSciNet  Google Scholar 

  28. Gehring, F.W., Martin, G.J., Palka, B.P.: An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings. Mathematical Surveys and Monographs Vol. 216, Amer. Math. Soc., (2017)

  29. Ghys, E., de La Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics 83, Birkhauser, Boston

  30. Hervé, M.: Quelques propriétés des applications analytiques d’une boule à m dimensions dans elle-même. J. Math. Pures Appl. 42, 117–147 (1963)

    MathSciNet  MATH  Google Scholar 

  31. Huang, X.J.: A non-degeneracy property of extremal mappings and iterates of holomorphic self-mappings. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21(3), 399–419 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Kapovich, I., Benakli, N., Boundaries of hyperbolic groups, In: Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of Contemp. Math., pages 39-93. Am. Math. Soc., Providence, RI, (1989)

  33. Karlsson, A.: Non-expanding maps and Busemann functions. Ergodic Theory Dyn. Syst. 21, 1447–1457 (2001)

    Article  MathSciNet  Google Scholar 

  34. Kuczumow, T., Stachura, A.: Iterates of holomorphic and \(k_D\)-nonexpansive mappings in convex domains in \(C^n\). Adv. Math. 81(1), 90–98 (1990)

    Article  MathSciNet  Google Scholar 

  35. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. math. France 109, 427–474 (1981)

    Article  MathSciNet  Google Scholar 

  36. Nikolov, N.: On a lower bound of the Kobayashi metric. Proc. Am. Math. Soc. 144, 4393–4394 (2016)

    Article  MathSciNet  Google Scholar 

  37. Peschke, G.: The theory of ends. Nieuw Arch. Wisk. (4) 8(1), 1–12 (1990)

    MathSciNet  MATH  Google Scholar 

  38. Royden, H. L.: Remarks on the Kobayashi metric. In: Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970), pages 125-137. Lecture Notes in Math., Vol. 185. Springer, Berlin, (1971)

  39. Suffridge, T.J.: The principle of subordination applied to functions of several variables. Pacif. J. Math. 33, 241–248 (1970)

    Article  MathSciNet  Google Scholar 

  40. Venturini, Sergio: Pseudodistances and pseudometrics on real and complex manifolds. Ann. Mat. Pura Appl. 154, 385–402 (1989)

    Article  MathSciNet  Google Scholar 

  41. Wolff, J.: Sur une généralisation d’un théorèeme de Schwarz, C.R. Acad. Sci. Paris 182, 918–920 (1926)

  42. Zimmer, A.: Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Math. Ann. 365, 1425–1498 (2016)

    Article  MathSciNet  Google Scholar 

  43. Zimmer, A.: Gromov hyperbolicity, the Kobayashi metric, and \({\mathbb{C}}\)-convex sets. Trans. Am. Math. Soc. 369, 8437–8456 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their very useful comments which improved the original version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Gaussier.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Bracci: Partially supported by the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

H. Gaussier: Partially supported by ERC ALKAGE.

A. Zimmer: Partially supported by the National Science Foundation under grants DMS-1760233 and DMS-1904099.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracci, F., Gaussier, H. & Zimmer, A. Homeomorphic extension of quasi-isometries for convex domains in \({\mathbb {C}}^d\) and iteration theory. Math. Ann. 379, 691–718 (2021). https://doi.org/10.1007/s00208-020-01954-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-01954-1

Navigation