Skip to main content
Log in

A proof of the Muir–Suffridge conjecture for convex maps of the unit ball in \({\mathbb {C}}^n\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove (and improve) the Muir–Suffridge conjecture for holomorphic convex maps. Namely, let \(F:{\mathbb {B}}^n\rightarrow {\mathbb {C}}^n\) be a univalent map from the unit ball whose image D is convex. Let \({\mathcal {S}}\subset \partial {\mathbb {B}}^n\) be the set of points \(\xi \) such that \(\lim _{z\rightarrow \xi }\Vert F(z)\Vert =\infty \). Then we prove that \({\mathcal {S}}\) is either empty, or contains one or two points and F extends as a homeomorphism \(\tilde{F}:\overline{{\mathbb {B}}^n}{\setminus } {\mathcal {S}}\rightarrow \overline{D}\). Moreover, \({\mathcal {S}}=\emptyset \) if D is bounded, \({\mathcal {S}}\) has one point if D has one connected component at \(\infty \) and \({\mathcal {S}}\) has two points if D has two connected components at \(\infty \) and, up to composition with an automorphism of the ball and renormalization, F is an extension of the strip map in the plane to higher dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M.: Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Rende (1989)

    MATH  Google Scholar 

  2. Aizenberg, L., Shoikhet, D.: Boundary behavior of semigroups of holomorphic mappings on the unit ball in \({\mathbb{C}}^n\). Complex Var. Theory Appl. 47, 109–121 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bracci, F.: Common fixed points of commuting holomorphic maps in the unit ball of \({\mathbb{C}}^n\). Proc. Am. Math. Soc. 127, 1133–1141 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bracci, F., Contreras, M.D., Díaz-Madrigal, S.: Classification of semigroups of linear fractional maps in the unit ball. Adv. Math. 208, 318–350 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bracci, F., Gaussier, H.: Horosphere topology. arXiv.1605.04119v4

  6. Ghys, E., de La Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, vol. 83. Birkhäuser, Basel

  7. Gromov, M.: Hyperbolic Groups. Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987)

    Chapter  Google Scholar 

  8. Hervé, M.: Quelques propriétés des applications analytiques d’une boule à m dimensions danselle-même. J. Math. Pures Appl. 42, 117–147 (1963)

    MathSciNet  MATH  Google Scholar 

  9. Kobayashi, S.: Hyperbolic Complex Spaces. Grundlehren der mathematischen Wissenschaften, vol. 318. Springer, Berlin (1998)

    Book  Google Scholar 

  10. Lempert, L.: La métrique de Kobayashi et la réprésentation des domaines sur la boule. Bull. Soc. Math. Fr. 109, 427–474 (1981)

    Article  Google Scholar 

  11. MacCluer, B.D.: Iterates of holomorphic self-maps of the unit ball in \({\mathbb{C}}^N\). Mich. Math. J. 30, 97–106 (1983)

    Article  MathSciNet  Google Scholar 

  12. Muir Jr., J.R., Suffridge, T.J.: Unbounded convex mappings of the ball in \({\mathbb{C}}^n\). Proc. Am. Math. Soc. 129(11), 3389–3393 (2001)

    Article  MathSciNet  Google Scholar 

  13. Muir Jr., J.R., Suffridge, T.J.: A generalization of half-plane mappings to the ball in \({\mathbb{C}}^N\). Trans. Am. Math. Soc. 359, 1485–1498 (2007)

    Article  MathSciNet  Google Scholar 

  14. Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer, Dordrecht (2001)

    Book  Google Scholar 

  15. Zimmer, A.M.: Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Math. Ann. 365, 1425–1498 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Gaussier.

Additional information

Communicated by Ngaiming Mok.

This paper was written as part of the 2016–2017 CAS project Several Complex Variables and Complex Dynamics.

Filippo Bracci was partially supported by GNSAGA of INDAM.

Hervé Gaussier was partially supported by ERC ALKAGE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracci, F., Gaussier, H. A proof of the Muir–Suffridge conjecture for convex maps of the unit ball in \({\mathbb {C}}^n\) . Math. Ann. 372, 845–858 (2018). https://doi.org/10.1007/s00208-017-1581-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1581-8

Navigation