Skip to main content
Log in

Effective equidistribution of shears and applications

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A “shear” is a unipotent translate of a cuspidal geodesic ray in the quotient of the hyperbolic plane by a non-uniform discrete subgroup of \({\text {PSL}}(2,\mathbb {R})\), possibly of infinite co-volume. We prove the regularized equidistribution of shears under large translates with effective (that is, power saving) rates. We also give applications to weighted second moments of GL(2) automorphic L-functions, and to counting lattice points on locally affine symmetric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. By “spectral gap” we always mean the distance between the first eigenvalue \(\lambda _{1}\) and the base eigenvalue \(\lambda _{0}\) of the hyperbolic Laplacian; see Sect. 2.5.

  2. Of course one can instead order by wordlength in \(\Gamma \), as is done in [3], to restore equidistribution and apply the Affine Sieve.

  3. Equivalently, non-elementary, that is, not virtually abelian.

  4. For surface groups, being geometrically finite is equivalent to being finitely generated.

  5. Roughly speaking, the critical exponent measures the asymptotic growth rate of \(\Gamma \); see Sect. 2.1.

  6. Added in print: In private communication, Hee Oh has notified us that she and Nimish Shah have an unpublished manuscript in which they obtain a result similar to (1.16) in the lattice case.

  7. Recall that the limit set, \(\Lambda \), of \(\Gamma \) decomposes disjointly into cusps (i.e., parabolic fixed points) and radial limit points (also called “points of approximation”); the complement \(\partial \mathbb {H}{\setminus }\Lambda \) is called the free boundary (which is empty if \(\Gamma \) is a lattice). See §2.1.

  8. We should note that we are using a non-standard definition for the Eisenstein series, where we multiply the series by \(\tfrac{1}{\omega }\) instead of by \(\tfrac{1}{\omega ^s}\). Using the standard definition instead will result in minor changes to the regularized Eisenstein series in the lattice case.

References

  1. Blomer, V., Brumley, F., Kontorovich, A., Templier, N.: Bounding hyperbolic and spherical coefficients of Maass forms. J. Théor. Nombres Bordeaux 26(3), 559–579 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beardon, Alan F.: The Geometry of Discrete Groups, volume 91 of Graduate Texts in Mathematics. Springer, New York (1983)

    Book  Google Scholar 

  3. Bourgain, J., Gamburd, A., Sarnak, P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179(3), 559–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Gamburd, A., Sarnak, P.: Generalization of Selberg’s 3/16th theorem and affine sieve. Acta Math 207, 255–290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Kontorovich, A.: The affine sieve beyond expansion I: Thin hypotenuses. Int. Math. Res. Not. IMRN 19, 9175–9205 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Kontorovich, A., Sarnak, P.: Sector estimates for hyperbolic isometries. GAFA 20(5), 1175–1200 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Blomer, Valentin: Sums of Hecke eigenvalues over values of quadratic polynomials. Int. Math. Res. Not. IMRN, (16):Art. ID rnn059. 29, (2008)

  8. Bernstein, Joseph, Reznikov, André: Sobolev norms of automorphic functionals and Fourier coefficients of cusp forms. C. R. Acad. Sci. Paris Sér. I Math. 327(2), 111–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cowling, M., Haagerup, U., Howe, R.: Almost \(L^2\) matrix coefficients. J. Reine Angew. Math. 387, 97–110 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Delsarte, J.: Sur le gitter fuchsien. C. R. Acad. Sci. Paris 214, 147–179 (1942)

    MathSciNet  MATH  Google Scholar 

  11. Deligne, P.: La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diaconu, A., Garrett, P.: Subconvexity bounds for automorphic \(L\)-functions. J. Inst. Math. Jussieu 9(1), 95–124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaconu, A., Garrett, P., Goldfeld, D.: Moments for \(L\)-functions for \(GL_r\times GL_{r-1}\). In: Contributions in analytic and algebraic number theory, volume 9 of Springer Proc. Math., pp. 197–227. Springer, New York (2012)

  14. Dolgopyat, Dmitry: On decay of correlations in Anosov flows. Ann. of Math. (2) 147(2), 357–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duke, W., Rudnick, Z., Sarnak, P.: Density of integer points on affine homogeneous varieties. Duke Math. J. 71(1), 143–179 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eskin, A., McMullen, C.: Mixing, counting and equidistribution in lie groups. Duke Math. J. 71, 143–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gelfand, I.M., Graev, M.I., Pjateckii-Shapiro, I.I.: Teoriya predstavlenii i avtomorfnye funktsii. Generalized functions, No. 6. Izdat. Nauka, Moscow, (1966)

  18. Gelbart, S., Jacquet, H.: A relation between automorphic representations of \(\text{ GL }(2)\) and \(\text{ GL }(3)\). Ann. Sci. École Norm. Sup. (4) 11(4), 471–542 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Good, A.: The convolution method for Dirichlet series. In: The Selberg trace formula and related topics (Brunswick, Maine, 1984), volume 53 of Contemp. Math., pages 207–214. Amer. Math. Soc., Providence, RI, (1986)

  20. Ghosh, A., Reznikov, A., Sarnak, P.: Nodal domains of Maass forms I. Geom. Funct. Anal. 23(5), 1515–1568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hong, J., Kontorovich, A.: Almost prime coordinates for anisotropic and thin pythagorean orbits. Israel J. Math. 209(1), 397–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hulse, Thomas A., Kiral, E. Mehmet, Kuan, Chan Ieong, Lim, Li-Mei: Counting square discriminants, 2013. Preprint, arXiv:1307.6606

  23. Hooley, C.: On the number of divisors of a quadratic polynomial. Acta Math. 110, 97–114 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huber, H.: über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. i. Comment. Math. Helv. 30, 20–62 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iwaniec, H., Kowalski, E.: Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  26. Iwaniec, H.: Topics in classical automorphic forms. American Mathematical Society, Providence, RI (1997)

    Book  MATH  Google Scholar 

  27. Kontorovich, A., Oh, H.: Almost prime Pythagorean triples in thin orbits. J. reine angew. Math. 667, 89–131 (2012). arXiv:1001.0370

    MathSciNet  MATH  Google Scholar 

  28. Kontorovich, A.: The hyperbolic lattice point count in infinite volume with applications to sieves. Duke J. Math. 149(1), 1–36 (2009). arXiv:0712.1391

    Article  MathSciNet  MATH  Google Scholar 

  29. Kontorovich, A.: Levels of distribution and the affine sieve. Ann. Fac. Sci. Toulouse Math. (6) 23(5), 933–966 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, H., Sarnak, P.: Refined estimates towards the Ramanujan and Selberg conjectures. J. Amer. Math. Soc. 16(1), 175–181 (2003)

    Article  Google Scholar 

  31. Lax, P.D., Phillips, R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean space. Journal of Functional Analysis 46, 280–350 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, J., Sarnak, P.: Integral points on quadrics in three variables whose coordinates have few prime factors. Israel J. Math 178, 393–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Margulis, G.A.: On some aspects of the theory of Anosov systems. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows, Translated from the Russian by Valentina Vladimirovna Szulikowska

  34. Mohammadi, A., Oh, H.: Matrix coefficients, counting and primes for orbits of geometrically finite groups, (2013). To appear, JEMS

  35. Michel, P., Venkatesh, A.: The subconvexity problem for \(\text{ GL }_2\). Publ. Math. Inst. Hautes Études Sci. 111, 171–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. Sci. École Norm. Sup. (4) 38(1), 116–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nevo, A., Sarnak, P.: Prime and almost prime integral points on principal homogeneous spaces. Acta Math. 205(2), 361–402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oh, H., Shah, N.A.: Equidistribution and counting for orbits of geometrically finite hyperbolic groups. J. Amer. Math. Soc. 26(2), 511–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Oh, H., Shah, N.A.: Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids. Israel J. Math. 199(2), 915–931 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Patterson, S.J.: The Laplacian operator on a Riemann surface. Compositio Math. 31(1), 83–107 (1975)

    MathSciNet  MATH  Google Scholar 

  41. Patterson, S.J.: The limit set of a Fuchsian group. Acta Mathematica 136, 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Petridis, Y.N., Sarnak, P.: Quantum unique ergodicity for \(\text{ SL }_2({O})\backslash {\bf H}^3\) and estimates for \(L\)-functions. J. Evol. Equ. 1(3), 277–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sarnak, P.: Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series. Comm. Pure Appl. Math. 34(6), 719–739 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sarnak, P.: Additive number theory and Maass forms. In: Number theory (New York, 1982), vol. 1052 of Lecture Notes in Math., pp. 286–309. Springer, Berlin (1984)

  45. Sarnak, P.C.: Fourth moments of grossencharakteren zeta functions. Comm. Pure Appl. Math. 38, 167–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. (N.S.) 20, 47–87 (1956)

    MathSciNet  MATH  Google Scholar 

  47. Shalom, Y.: Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Ann. of Math. (2) 152(1), 113–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Strombergsson, A.: On the uniform equidistribution of long closed horocycles. Duke Math. J. 123, 507–547 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sarnak, Peter, Ubis, Adrián: The horocycle flow at prime times. J. Math. Pures Appl. (9) 103(2), 575–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4), 259–277 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. Oxford Univ. Press, London/New York, Oxford (1951)

    MATH  Google Scholar 

  52. Templier, N., Tsimerman, J.: Non-split sums of coefficients of \(GL(2)\)-automorphic forms. Israel J. Math. 195(2), 677–723 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Venkatesh, A.: Sparse equidistribution problems, period bounds and subconvexity. Ann. of Math. (2) 172(2), 989–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zagier, D.: Eisenstein series and the Riemann zeta function. In: Automorphic forms, representation theory and arithmetic (Bombay, 1979), volume 10 of Tata Inst. Fund. Res. Studies in Math., pages 275–301. Tata Inst. Fundamental Res., Bombay, (1981)

Download references

Acknowledgements

The authors would like to express their gratitude to Jens Marklof, Curt McMullen, and Peter Sarnak for many enlightening comments and suggestions. The second author would especially like to thank Valentin Blomer, Farrell Brumley, and Nicolas Templier for many hours of discussion about this problem; see also the related work in [1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kontorovich.

Additional information

Communicated by A. Venkatesh.

Kelmer is partially supported by NSF Grant DMS-1237412 and NSF Grant DMS-1401747.

Kontorovich is partially supported by an NSF CAREER Grant DMS-1254788/DMS-1455705, an NSF FRG Grant DMS-1463940, and an Alfred P. Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelmer, D., Kontorovich, A. Effective equidistribution of shears and applications. Math. Ann. 370, 381–421 (2018). https://doi.org/10.1007/s00208-017-1580-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1580-9

Navigation