Skip to main content
Log in

Loss of regularity for supercritical nonlinear Schrödinger equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the nonlinear Schrödinger equation with defocusing, smooth, nonlinearity. Below the critical Sobolev regularity, it is known that the Cauchy problem is ill-posed. We show that this is even worse, namely that there is a loss of regularity, in the spirit of the result due to G. Lebeau in the case of the wave equation. As a consequence, the Cauchy problem for energy-supercritical equations is not well-posed in the sense of Hadamard. We reduce the problem to a supercritical WKB analysis. For super-cubic, smooth nonlinearity, this analysis is new, and relies on the introduction of a modulated energy functional à la Brenier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Carles, R.: Supercritical geometric optics for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. (2009, in press). doi:10.1007/s00205-008-0176-7

  2. Alinhac, S., Gérard, P.: Pseudo-differential operators and the Nash-Moser theorem, Graduate Studies in Mathematics, vol. 82. American Mathematical Society, Providence (2007) (translated from the 1991 French original by Stephen S. Wilson)

  3. Anton, R.: Cubic nonlinear Schrödinger equation on three dimensional balls with radial data. Commun. Partial Differ. Equ. (to appear). Archived as arXiv:math/0608689

  4. Anton R.: Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France 136(1), 27–65 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Anton R.: Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains. J. Math. Pure Appl. (9) 89(4), 335–354 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Brenier Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Comm. Partial Differ. Equ. 25(3–4), 737–754 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burq N., Gérard P., Tzvetkov N.: An instability property of the nonlinear Schrödinger equation on S d. Math. Res. Lett. 9(2–3), 323–335 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Burq N., Gérard P., Tzvetkov N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126(3), 569–605 (2004)

    Article  MATH  Google Scholar 

  9. Burq N., Gérard P., Tzvetkov N.: Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Sci. École Norm. Sup. (4) 38(2), 255–301 (2005)

    MATH  Google Scholar 

  10. Carles R.: Geometric optics and instability for semi-classical Schrödinger equations. Arch. Ration. Mech. Anal. 183(3), 525–553 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carles R.: WKB analysis for nonlinear Schrödinger equations with potential. Commun. Math. Phys. 269(1), 195–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cazenave T., Weissler F.: The Cauchy problem for the critical nonlinear Schrödinger equation in H s. Nonlinear Anal. TMA 14, 807–836 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cheverry C., Guès O.: Counter-examples to concentration-cancellation. Arch. Ration. Mech. Anal. 189(3), 363–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiron, D., Rousset, F.: Geometric optics and boundary layers for nonlinear Schrödinger equations, preprint. Archived as arXiv:0804.1275 (2008)

    Google Scholar 

  15. Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrödinger and wave equations. Archived as arXiv:math.AP/0311048

  16. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy–critical nonlinear Schrödinger equation in \({\mathbb R^3}\) . Ann. Math. (2) 167(3), 767–865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Córdoba A., Fefferman C.: Wave packets and Fourier integral operators. Commun. Partial Differ. Equ. 3(11), 979–1005 (1978)

    Article  MATH  Google Scholar 

  18. Delort J.-M.: F.B.I. transformation. Second microlocalization and semilinear caustics. Lecture Notes in Mathematics, vol. 1522. Springer, Berlin (1992)

    Google Scholar 

  19. Gérard, P.: Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École Polytech., Palaiseau, pp. Exp. No. XIII, 13 (1993)

  20. Ginibre J., Velo G.: On the global Cauchy problem for some nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 309–323 (1984)

    MATH  MathSciNet  Google Scholar 

  21. Ginibre J., Velo G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1985)

    MATH  MathSciNet  Google Scholar 

  22. Grenier E.: Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Am. Math. Soc. 126(2), 523–530 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kato T.: On nonlinear Schrödinger equations. Ann. IHP (Phys. Théor.) 46(1), 113–129 (1987)

    MATH  Google Scholar 

  24. Kato T.: Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988). Lecture Notes in Phys., vol. 345, pp. 218–263. Springer, Berlin (1989)

    Google Scholar 

  25. Lebeau, G.: Non linear optic and supercritical wave equation, Bull. Soc. R. Sci. Liège 70 (2001), no. 4-6, 267–306 (2002). Hommage à Pascal Laubin

  26. Lebeau G.: Perte de régularité pour les équations d’ondes sur-critiques. Bull. Soc. Math. France 133, 145–157 (2005)

    MATH  MathSciNet  Google Scholar 

  27. Lin F., Zhang P.: Semiclassical limit of the Gross-Pitaevskii equation in an exterior domain. Arch. Rational Mech. Anal. 179(1), 79–107 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Makino T., Ukai S., Kawashima S.: Sur la solution à support compact de l’équation d’Euler compressible. Jpn. J. Appl. Math. 3(2), 249–257 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Martinez A.: An introduction to semiclassical and microlocal analysis, Universitext. Springer, New York (2002)

    Google Scholar 

  30. Ryckman E., Visan M.: Global well-posedness and scattering for the defocusing energy–critical nonlinear Schrödinger equation in \({\mathbb R^{1+4}}\) . Am. J. Math. 129(1), 1–60 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Local and global analysis, Washington, DC (2006)

  32. Taylor M.: Partial differential equations. III, Applied Mathematical Sciences, Nonlinear equations, vol. 117. Springer, New York (1997)

    Google Scholar 

  33. Thomann L.: The WKB method and geometric instability for non linear Schrödinger equations on surfaces. Bull. Soc. Math. France 136(2), 167–193 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Thomann L.: Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Differ. Equ. 245(1), 249–280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xin Z.: Blowup of smooth solutions of the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Carles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alazard, T., Carles, R. Loss of regularity for supercritical nonlinear Schrödinger equations. Math. Ann. 343, 397–420 (2009). https://doi.org/10.1007/s00208-008-0276-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0276-6

Mathematics Subject Classification (2000)

Navigation