Skip to main content
Log in

Lower Transport Bounds for One-dimensional Continuum Schrödinger Operators

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove quantum dynamical lower bounds for one-dimensional continuum Schrödinger operators that possess critical energies for which there is slow growth of transfer matrix norms and a large class of compactly supported initial states. This general result is applied to a number of models, including the Bernoulli–Anderson model with a constant single-site potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Bièvre S., Germinet F. (2000). Dynamical localization for the random dimer Schrödinger operator. J. Stat. Phys. 98:1135–1148

    Article  MATH  Google Scholar 

  2. Carmona R., Klein A., Martinelli F. (1987). Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108:41–66

    Article  MathSciNet  MATH  Google Scholar 

  3. Combes J.M. (1993). Connections between quantum dynamics and spectral properties of time-evolution operators. In: Ames W.F., Harrel II E.M., Herod J.V. (eds) Differential Equations with Applications to Mathematical Physics. Academic, Boston, pp 59–68

    Google Scholar 

  4. Damanik D., Tcheremchantsev S. (2003). Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236:513–534

    Article  MathSciNet  MATH  Google Scholar 

  5. Damanik D., Tcheremchantsev S. (2005). Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading. J. d’Analyse Math. 97:103–131

    Article  MathSciNet  Google Scholar 

  6. Damanik D., Sims R., Stolz G. (2002). Localization for one-dimensional, continuum, Bernoulli–Anderson models. Duke Math. J. 114:59–100

    Article  MathSciNet  MATH  Google Scholar 

  7. Damanik, D., Sims, R., Stolz, G.:Lyapunov exponents in continuum Bernoulli–Anderson models, In: Operator Methods in Ordinary and Partial Differential Equations Stockholm, 2000, 121–130, Oper. Theory Adv. Appl. 132 Birkhäuser, Basel (2002)

  8. Damanik D., Sütő A., Tcheremchantsev S. (2004). Power-law bounds on transfer matrices and quantum dynamics in one dimension II. J. Funct. Anal. 216:362–387

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunlap D.H., Wu H.-L., Phillips P.W. (1990). Absence of localization in a random-dimer model. Phys. Rev. Lett. 65:88–91

    Article  Google Scholar 

  10. Eastham M.S.P. (1973). The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh and London

    MATH  Google Scholar 

  11. Germinet F., de Bièvre S. (1998). Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194:323–341

    Article  MATH  Google Scholar 

  12. Germinet F., Kiselev A., Tcheremchantsev S. (2004). Transfer matrices and transport for 1D Schrödinger operators with singular spectrum. Ann. Inst. Fourier 54:787–830

    MathSciNet  MATH  Google Scholar 

  13. Gilbert D.J., Pearson D.B. (1987). On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128:30–56

    Article  MathSciNet  MATH  Google Scholar 

  14. Guarneri I. (1989). Spectral properties of quantum diffusion on discrete lattices. Europhys. Lett. 10:95–100

    Article  Google Scholar 

  15. Iochum B., Testard D. (1991). Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65:715–723

    Article  MathSciNet  MATH  Google Scholar 

  16. Jitomirskaya S., Last Y. (1999). Power-law subordinacy and singular spectra. I. Half-line operators. Acta. Math. 183:171–189

    Article  MathSciNet  MATH  Google Scholar 

  17. Jitomirskaya S., Last Y. (2000). Power-law subordinacy and singular spectra. II. Line operators. Commun. Math. Phys. 211:643–658

    Article  MathSciNet  MATH  Google Scholar 

  18. Jitomirskaya S., Schulz-Baldes H., Stolz G. (2003). Delocalization in random polymer models. Commun. Math. Phys. 233:27–48

    Article  MathSciNet  MATH  Google Scholar 

  19. Killip R., Kiselev A., Last Y. (2003). Dynamical upper bounds on wavepacket spreading. Am. J. Math. 125:1165–1198

    Article  MathSciNet  MATH  Google Scholar 

  20. Last Y. (1996). Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142:406–445

    Article  MathSciNet  MATH  Google Scholar 

  21. Radin Ch., Simon B. (1978). Invariant domains for the time-dependent Schrödinger equation. J. Diff. Equations 29:289–296

    Article  MathSciNet  MATH  Google Scholar 

  22. Reed M., Simon B. (1978). Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic, New York

    MATH  Google Scholar 

  23. Simon B. (1996). Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Amer. Ma. Soc. 124:3361–3369

    Article  Google Scholar 

  24. Stolz G. (2000). Non-monotonic random Schrödinger operators: the Anderson model. J. Math. Anal. Appl. 248:173–183

    Article  MathSciNet  MATH  Google Scholar 

  25. Tcheremchantsev S. (2005). Dynamical analysis of Schrödinger operators with growing sparse potentials. Commun. Math. Phys. 253:221–252

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Damanik.

Additional information

Dedicated to Joachim Weidmann on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damanik, D., Lenz, D. & Stolz, G. Lower Transport Bounds for One-dimensional Continuum Schrödinger Operators. Math. Ann. 336, 361–389 (2006). https://doi.org/10.1007/s00208-006-0006-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0006-x

Keywords

Navigation