Skip to main content
Log in

Geometric Hydrodynamics in Open Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Geometric Hydrodynamics has flourished ever since the celebrated 1966 paper of V. Arnold. In this paper we present a collection of open problems along with several new constructions in fluid dynamics and a concise survey of recent developments and achievements in this area. The topics discussed include variational settings for different types of fluids, models for invariant metrics, the Cauchy and boundary value problems, partial analyticity of solutions to the Euler equations, their steady and singular vorticity solutions, differential and Hamiltonian geometry of diffeomorphism groups, long-time behaviour of fluids, as well as mechanical models of direct and inverse cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We thank the anonymous referee for this remark.

  2. V. Yudovich referred to this phenomenon as “regularity deterioration”.

  3. It is not clear if such an object has anything in common with the entropy of an invariant measure as typically defined in the theory of dynamical systems.

References

  1. Aref, H., Rott, N., Thomann, H.: Gröbli’s solution of the three-vortex problem. Annu. Rev. Fluid Mech. 24, 1–21, 1992

    ADS  MATH  Google Scholar 

  2. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 316–361, 1966

    Google Scholar 

  3. Arnold, V.I.: The Hamiltonian nature of the Euler equation in the dynamics of rigid body and of an ideal fluid. Uspekhi Matem. Nauk 24(3), 225–226, 1969

    MathSciNet  Google Scholar 

  4. Arnold, V.I.: The asymptotic Hopf invariant and its applications. Proceedings of Summer School in Diff. Equations at Dilizhan, 1973 (1974), Erevan; English transl.: Sel. Math. Sov. 5, 327–345, 1986

  5. Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

  6. Arnold, V., Khesin, B.: Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125. Springer, New York, pp. xv+374, 1998; second extended edition: Springer-Nature Switzerland 2021

  7. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011)

  8. Balabanova, N.A.: A Hamiltonian approach for point vortices on non-orientable surfaces II: the Klein bottle, 2022. Preprint arXiv:2202.06175

  9. Balabanova, N.A., Montaldi, J.: Hamiltonian approach for point vortices on non-orientable surfaces I: the Mobius band, 2022. Preprint arXiv:2202.06160

  10. Bardos, C., Titi, E.: Euler equations for an ideal incompressible fluid. Uspekhi Mat. Nauk 62, 5–46, 2007

    MathSciNet  MATH  Google Scholar 

  11. Bardos, C., Titi, E.: Loss of smoothness and energy conserving rough weak solutions for the 3D Euler equations. Discrete Contin. Dyn. Syst. 3, 185–197, 2010

    MathSciNet  MATH  Google Scholar 

  12. Beale, T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94, 61–66, 1984

    ADS  MATH  Google Scholar 

  13. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publications mathématiques de l’IHÉS 122, 195–300, 2015

    MathSciNet  MATH  Google Scholar 

  14. Beekie, R., Friedlander, S., Vicol, V.: On Moffatt’s magnetic relaxation equations. Commun. Math. Phys. 39(3), 1311–1339, 2022

    ADS  MathSciNet  MATH  Google Scholar 

  15. Benn, J.: The \(L^2\) geometry of the symplectomorphism group. Ph.D. thesis, the University of Notre Dame, 2015

  16. Bogaevski, I.A.: Perestroikas of shock waves in optimal control. J. Math. Sci. 126(4), 1229–1242, 2005

    MathSciNet  Google Scholar 

  17. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201, 97–157, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  18. Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in integer \(C^m\) spaces. Geom. Funct. Anal. 25, 1–86, 2015

    MathSciNet  MATH  Google Scholar 

  19. Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52(4), 411–452, 1999

    MathSciNet  MATH  Google Scholar 

  20. Brenier, Y., Gangbo, W., Savaré, G., Westdickenberg, M.: Sticky particle dynamics with interactions. J. Math. Pures Appl. 99(9), 577–617, 2013

    MathSciNet  MATH  Google Scholar 

  21. Bush, J.W.: Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA 107, 17455–17456, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  22. Chae, D.: Local existence and blowup criterion for the Euler equations in the Besov spaces. Asympt. Anal. 38, 339–358, 2004

    MATH  Google Scholar 

  23. Chemin, J.: Perfect Incompressible Fluids. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  24. Choffrut, A., Sverak, V.: Local structure of the set of steady-state solutions to the 2D incompressible Euler equations. Geom. Funct. Anal. 22, 136–201, 2012

    MathSciNet  MATH  Google Scholar 

  25. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. (N.S.) 44, 603–621, 2007

    MathSciNet  MATH  Google Scholar 

  26. Constantin, P., Vicol, V., Wu, J.: Analyticity of Lagrangian trajectories for well-posed inviscid incompressible fluid models. Adv. Math. 285, 352–393, 2015

    MathSciNet  MATH  Google Scholar 

  27. Constantin, P., La, J., Vicol, V.: Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications. Geom. Funct. Anal. 29, 1773–1793, 2019

    MathSciNet  MATH  Google Scholar 

  28. Couder, Y., Protiere, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208, 2005

    ADS  Google Scholar 

  29. Danielski, A.: Analytical structure of stationary flows of an ideal incompressible fluid. Masters thesis, Concordia University, 2017

  30. DeTurck, D., Gluck, H.: Linking, twisting, writhing and helicity on the 3-sphere and in hyperbolic 3-space. J. Differ. Geom. 94, 87–128, 2013

    MathSciNet  MATH  Google Scholar 

  31. Dieudonne, J.: Foundations of Modern Analysis. Academic Press, New York (1969)

    MATH  Google Scholar 

  32. Dolce, M., Drivas, T.: On maximally mixed equilibria of two-dimensional perfect fluids. Arch. Ration. Mech. Anal. (ARMA) 246, 735–770, 2022

    ADS  MathSciNet  MATH  Google Scholar 

  33. Drivas, T., Misiołek, G., Shi, B., Yoneda, T.: Conjugate and cut points in ideal fluid motion. Ann. Math. Qué. 46, 207–225, 2022

    MathSciNet  MATH  Google Scholar 

  34. Drivas, T., Elgindi, T.: Singularity formation in the incompressible Euler equation in finite and infinite time, 2022. Preprint arXiv:2203.17221. To appear in EMS Surveys in Mathematical Sciences

  35. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13(1), 249–255, 2000

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163, 1970

    MathSciNet  MATH  Google Scholar 

  37. Ebin, D., Misiołek, G., Preston, S.: Singularities of the exponential map on the volume-preserving diffeomorphism group. Geom. Funct. Anal. 16, 850–868, 2006

    MathSciNet  MATH  Google Scholar 

  38. Elgindi, T., Masmoudi, N.: \(L^\infty \) ill-posedness for a class of equations arising in hydrodynamics. Arch. Ration. Mech. Anal. 235, 1979–2025, 2020

    MathSciNet  MATH  Google Scholar 

  39. Enciso, A., Luque, A., Peralta-Salas, D.: Beltrami fields with hyperbolic periodic orbits enclosed by knotted invariant tori. Adv. Math. 373, 107328, 2020

    MathSciNet  MATH  Google Scholar 

  40. Enciso, A., Peralta-Salas, D.: Knots and links in steady solutions of the Euler equation. Ann. Math. 175, 345–367, 2012

    MathSciNet  MATH  Google Scholar 

  41. Enciso, A., Peralta-Salas, D.: Existence of knotted vortex tubes in steady Euler flows. Acta Math. 214, 61–134, 2015

    MathSciNet  MATH  Google Scholar 

  42. Enciso, A., Peralta-Salas, D.: Beltrami fields with a nonconstant proportionality factor are rare. Arch. Ration. Mech. Anal. 220, 243–260, 2016

    MathSciNet  MATH  Google Scholar 

  43. Enciso, A., Peralta-Salas, D., Torres de Lizaur, F.: Knotted structures in high-energy Beltrami fields on the torus and the sphere. Ann. Sci. Éc. Norm. Sup. 50, 995–1016, 2017

    MathSciNet  MATH  Google Scholar 

  44. Enciso, A., Peralta-Salas, D., Torres de Lizaur, F.: Helicity is the only integral invariant of volume-preserving transformations. Proc. Natl. Acad. Sci. USA 113, 2035–2040, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  45. Feynman, R., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 1, pp. 46.1–46.9. Addison-Wesley (1977)

  46. Freedman, M.H., He, Z.-X.: Divergence-free fields: energy and asymptotic crossing number. Ann. Math. 134(1), 189–229, 1991

    MathSciNet  MATH  Google Scholar 

  47. Friedlander, S., Vishik, M.: Lax pair formulation for the Euler equation. Phys. Lett. A 148(6–7), 313–319, 1990

    ADS  MathSciNet  MATH  Google Scholar 

  48. Fritsche, L., Haugk, M.: Stochastic foundation of quantum mechanics and the origin of particle spin, 2009. Preprint arXiv:0912.3442

  49. Fusca, D.: The Madelung transform as a momentum map. J. Geom. Mech. 9, 157–165, 2017

    MathSciNet  MATH  Google Scholar 

  50. Gamblin, P.: Système d’Euler incompressible et régularité microlocale analytique. Annales de l’Institut Fourier 44(5), 1449–1475, 1994

    MathSciNet  MATH  Google Scholar 

  51. Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29, 190–197, 2019

    MathSciNet  MATH  Google Scholar 

  52. Gie, G.-M., Kelliher, J.P., Mazzucato, A.L.: The 3D Euler equations with inflow, outflow and vorticity boundary conditions, 2022. arXiv:2203.15180

  53. Gunther, N.: On the motion of a fluid contained in a given moving vessel (Russian). Izvestia Akad. Nauk USSR Ser. Fiz. Mat. 20, 1926, 21, 1927, 22, 1928

  54. Haller, S., Vizman, C.: Nonlinear Grassmannians as coadjoint orbits, preprint arXiv:math.DG/0305089, 13pp, extended version of Math. Ann. 329(4), 771–785, 2003

  55. Hernandez, M.: Mechanisms of Lagrangian analyticity in fluids. Arch. Ration. Mech. Anal. (ARMA) 233, 513–598, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  56. Hille, E., Phillips, R.: Functional Analysis and Semigroups. AMS Colloquium Publ, Providence (1957)

    MATH  Google Scholar 

  57. Inci, H., Kappeler, T., Topalov, P.: On the Regularity of the Composition of Diffeomorphisms. Memoirs of the American Mathematical Society 2013

  58. Izosimov, A., Khesin, B.: Classification of Casimirs in 2D hydrodynamics. Moscow Math J. 17(4), 699–716, 2017

    MathSciNet  MATH  Google Scholar 

  59. Izosimov, A., Khesin, B.: Vortex sheets and diffeomorphism groupoids. Adv. Math. 338, 447–501, 2018

    MathSciNet  MATH  Google Scholar 

  60. Izosimov, A., Khesin, B.: Geometry of generalized fluid flows, 2022. Preprint arXiv:2206.01434

  61. Izosimov, A., Khesin, B., Mousavi, M.: Coadjoint orbits of symplectic diffeomorphisms of surfaces and ideal hydrodynamics. Annales de l’Institut Fourier 66(6), 2385–2433, 2016

    MathSciNet  MATH  Google Scholar 

  62. Jerrard, R.L.: Vortex filament dynamics for Gross-Pitaevsky type equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(4), 733–768, 2002

    MathSciNet  MATH  Google Scholar 

  63. Jerrard, R.L., Smets, D.: Vortex dynamics for the two-dimensional non-homogeneous Gross-Pitaevskii equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. XIV(5), 1–38, 2015

    MathSciNet  MATH  Google Scholar 

  64. Jerrard, R.L., Smets, D.: On the motion of a curve by its binormal curvature. J. Eur. Math. Soc. 017(6), 1487–1515, 2015

    MathSciNet  MATH  Google Scholar 

  65. Jiménez, V.M., De León, M., Epstein, M.: Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. J. Geom. Mech. 11(3), 301–324, 2019

    MathSciNet  MATH  Google Scholar 

  66. Kato, T.: On the classical solutions of the two dimensional non stationary Euler equation. Arch. Ration. Mech. Anal. 25, 188–200, 1967

    MATH  Google Scholar 

  67. Kato, T., Ponce, G.: On nonstationary flows of viscous and ideal fluids in \(L^p_s(\mathbb{R} ^2)\). Duke Math. J. 55, 487–499, 1987

    MathSciNet  MATH  Google Scholar 

  68. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907, 1988

    MathSciNet  MATH  Google Scholar 

  69. Khanin, K., Sobolevski, A.: Particle dynamics inside shocks in Hamilton-Jacobi equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. 368(1916), 1579–1593, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  70. Khanin, K., Sobolevski, A.: On dynamics of Lagrangian trajectories for Hamilton–Jacobi equations. Arch. Ration. Mech. Anal. 219, 861–885, 2016

    MathSciNet  MATH  Google Scholar 

  71. Khesin, B.: Symplectic structures and dynamics on vortex membranes. Moscow Math. J. 12(2), 413–434, 2012

    MathSciNet  MATH  Google Scholar 

  72. Khesin, B., Kuksin, S., Peralta-Salas, D.: KAM theory and the 3D Euler equation. Adv. Math. 267, 498–522, 2014

    MathSciNet  MATH  Google Scholar 

  73. Khesin, B., Kuksin, S., Peralta-Salas, D.: Global, local and dense non-mixing of the 3D Euler equation. Arch. Ration. Mech. Anal. (ARMA) 238, 1087–1112, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  74. Khesin, B., Misiołek, G.: Shock waves for the Burgers equation and curvatures of diffeomorphism groups. Proc. Steklov Math. Inst. 259, 73–81, 2007

    MathSciNet  MATH  Google Scholar 

  75. Khesin, B., Misiołek, G., Modin, K.: Geometric hydrodynamics via Madelung transform. Proc. Nat. Acad. Sci. 115(24), 6165–6170, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  76. Khesin, B., Misiołek, G., Modin, K.: Geometry of the Madelung transform. Arch. Ration. Mech. Anal. 234, 549–573, 2019

    MathSciNet  MATH  Google Scholar 

  77. Khesin, B., Misiołek, G., Modin, K.: Geometric hydrodynamics and infinite-dimensional Newton’s equations. Bull. Am. Math. Soc. 58, 377–442, 2021

    MathSciNet  MATH  Google Scholar 

  78. Khesin, B., Wang, H.: The golden ratio and hydrodynamics. The Math. Intell. (TMIN) 44(1), 22–27, 2022

    MathSciNet  MATH  Google Scholar 

  79. Kirillov, I.: Classification of coadjoint orbits for symplectomorphism groups of surfaces. Int. Math. Res. Notices IMRN, 2022. https://doi.org/10.1093/imrn/rnac041

    Article  MATH  Google Scholar 

  80. Kozlov, V.V., Treschev, D.V.: Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point I. Vestn. Mosk. Univ. Ser. 1. Matem. Mekh. 6, 73–81, 1985

    MathSciNet  Google Scholar 

  81. Kozlov, V.V., Treschev, D.V.: Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point II. Vestn. Mosk. Univ. Ser. 1. Matem. Mekh. 1, 39–44, 1986

    MathSciNet  Google Scholar 

  82. Kupferman, R., Olami, E., Segev, R.: Continuum dynamics on manifolds: application to elasticity of residually-stressed bodies. J. Elast. 128, 61–84, 2017

    MathSciNet  MATH  Google Scholar 

  83. Laurence, P., Stredulinsky, E.: Asymptotic Massey products, induced currents and Borromeantorus links. J. Math. Phys. 41(5), 3170–3191, 2000

    ADS  MathSciNet  MATH  Google Scholar 

  84. Lebeau, G.: Régularité du probléme de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim. Calculus Var. 8, 801–825, 2002

    MathSciNet  MATH  Google Scholar 

  85. Lemarie-Rieusset, P.: Espaces limites pour le contre-exemple de Bardos et Titi sur le shear flow. Personal communication of C. Bardos.

  86. Lewis, D., Marsden, J., Montgomery, R., Ratiu, T.: The Hamiltonian structure for dynamic free boundary problems. Physica D 18, 391–404, 1986

    ADS  MathSciNet  MATH  Google Scholar 

  87. Li, Y.C., Yurov, A.V.: Lax pairs and Darboux transformations for Euler equations. Studies in Applied Math. 2003. https://doi.org/10.1111/1467-9590.t01-1-00229, arXiv:math/0101214

  88. Lichtenfelz, L., Tauchi, T., Yoneda,T.: Existence of a conjugate point in the incompressible Euler flow on the three-dimensional ellipsoid,2022. Preprint arXiv:2204.00732

  89. Lichtenstein, L.: Über einige Hilfssätze der Potentialtheorie I. Math. Zeit. 23, 72–78, 1925

    MATH  Google Scholar 

  90. Lichtenstein, L.: Uber einige Existenzprobleme der Hydrodynamik unzusamendruckbarer, reibunglosiger Flussigkeiten und die Helmholtzischen Wirbelsatze. Math. Zeit. 23, 1925, 26, 1927, 28, 1928, 32, 1930

  91. Loeschcke, C.: On the relaxation of a variational principle for the motion of a vortex sheet in perfect fluid. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 2012

  92. Lukatskii, A.: Homogeneous vector bundles and the diffeomorphism groups of compact homogeneous spaces (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 39, 1274–1283, 1437, 1975

  93. Lukatskii, A.: Finite generation of groups of diffeomorphisms. Uspekhi Mat. Nauk 199, 219–220, 1978

    Google Scholar 

  94. Lukatskii, A.: Finite generation of groups of diffeomorphisms. Russ. Math. Surv. 33, 207–208, 1978

    Google Scholar 

  95. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322–326, 1927

    ADS  MATH  Google Scholar 

  96. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  97. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, Appl. Math. Sci., vol. 96. Springer-Verlag, 1994

  98. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publ. 1994

  99. Maxwell, J.C.: On physical lines of force. Part 1. The theory of molecular vortices applied to magnetic phenomena. Philos. Mag. XXI, 161–175, 1861; see Wikipedia article on “History of Maxwell’s equations"

  100. Milnor, J.W.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329, 1976

    MathSciNet  MATH  Google Scholar 

  101. Misiołek, G.: Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms. Indiana Univ. Math. J. 42, 215–235, 1993

    MathSciNet  MATH  Google Scholar 

  102. Misiołek, G.: Conjugate points in \(\cal{D} _\mu (\mathbb{T} ^2)\). Proc. Am. Math. Soc. 124, 977–982, 1996

    Google Scholar 

  103. Misiołek, G., Preston, S.: Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. Math. 179, 191–227, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  104. Misiołek, G., Yoneda, T.: Ill-posedness examples for the quasi-geostrophic and the Euler equations. Contemp. Math. 584, 251–258, 2012

    MathSciNet  MATH  Google Scholar 

  105. Misiołek, G., Yoneda, T.: Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces. Trans. Am. Math. Soc. 370, 4709–4730, 2018

    MATH  Google Scholar 

  106. Modin, K., Viviani, M.: A Casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics. J. Fluid Mech. 884, A22, 2020

    ADS  MathSciNet  MATH  Google Scholar 

  107. Modin, K., Viviani, M.: Integrability of point-vortex dynamics via symplectic reduction: a survey. Arnold Math. J. 7(3), 357–385, 2021

    MathSciNet  MATH  Google Scholar 

  108. Modin, K., Viviani, M.: Canonical scale separation in two-dimensional incompressible hydrodynamics. J. Fluid Mech. 943, A36, 2022

    ADS  MathSciNet  MATH  Google Scholar 

  109. Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129, 1969

    ADS  MATH  Google Scholar 

  110. Moffatt, H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology I. J. Fluid Mech. 159, 1985

  111. Moffatt, H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology II. J. Fluid Mech. 166, 359–378, 1986

    ADS  MATH  Google Scholar 

  112. Moffatt, H.K.: Some topological aspects of fluid dynamics. J. Fluid Mech. 914, Paper No. P1, 2021

  113. Morales-Ruiz, J.J., Ramis, J.P.: Galoisian obstructions to integrability of hamiltonian systems I, II. Methods Appl. Anal. 8(1), 33–95, 97–111, 2001

  114. Morgulis, A., Shnirelman, A., Yudovich, V.: Loss of smoothness and inherent istability of 2D inviscid fluid flows. Commun. PDE 33, 943–968, 2008

    MATH  Google Scholar 

  115. Morgulis, A., Yudovich, V.I., Zaslavsky, G.M.: Compressible helical flows. Commun. Pure Appl. Math. 48(5), 571–582, 1995

    MathSciNet  MATH  Google Scholar 

  116. Nadirashvili, N.S.: Wandering solutions of the Euler 2D equation. Funct. Anal. Appl. 25(3), 220–221, 1991

    MathSciNet  MATH  Google Scholar 

  117. Nadirashvili, N.: On stationary solutions of two-dimensional Euler equations. Arch. Ration. Mech. Anal. 209, 729–745, 2013

    MathSciNet  MATH  Google Scholar 

  118. Newton, P.K.: The \(N\)-vortex Problem: Analytic Techniques. Springer, New York (2001)

    MATH  Google Scholar 

  119. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. PDE 26(1–2), 101–174, 2001

    MathSciNet  MATH  Google Scholar 

  120. Pak, H.C., Park, Y.J.: Existence of solution for the Euler equations in a critical Besov space. Commun. PDE 29, 1149–1166, 2004

    MathSciNet  MATH  Google Scholar 

  121. Petrovsky, I.G.: Ordinary Differential Equations. Prentice-Hill, 1966

  122. Preston, S.: For ideal fluids, Eulerian and Lagrangian instabilities are equivalent. Geom. Funct. Anal. 14(5), 1044–1062, 2004

    MathSciNet  MATH  Google Scholar 

  123. Preston, S.: On the volumorphism group, the first conjugate point is always the hardest. Commun. Math. Phys. 267, 493–513, 2006

    ADS  MathSciNet  MATH  Google Scholar 

  124. Preston, S.: The WKB method for conjugate points in the volumorphism group. Indiana Univ. Math. J. 57, 3303–3327, 2008

    MathSciNet  MATH  Google Scholar 

  125. von Renesse, M.-K.: An optimal transport view of Schrödinger’s equation. Can. Math. Bull. 55, 858–869, 2012

    MATH  Google Scholar 

  126. Rykov, Y.G., Sinai, Y.G., Weinan, E.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177(2), 349–380, 1996

    ADS  MathSciNet  MATH  Google Scholar 

  127. Serfati, P.: Structures holomorphes a faible regularite spatiale en mechanique de fluides. J. Math. Pures Appl. 74, 95–104, 1995

    MathSciNet  MATH  Google Scholar 

  128. Shashikanth, B.N.: Vortex dynamics in \(\mathbb{R} ^4\). J. Math. Phys. 53(1), 013103, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  129. Shnirelman, A.: The degree of a quasiruled mapping, and the nonlinear Hilbert problem. Mat. Sb. (N.S.) 89, 366–389, 1972

    MathSciNet  Google Scholar 

  130. Shnirelman, A.: The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Mat. Sb. (N.S.) 128, 82–109, 1985

    MathSciNet  Google Scholar 

  131. Shnirelman, A.: Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. 4, 586–620, 1994

    MathSciNet  MATH  Google Scholar 

  132. Shnirelman, A.: Evolution of singularities, generalized Liapunov function and generalized integral for an ideal incompressible fluid. Am. J. Math. 119, 579–608, 1997

    MathSciNet  MATH  Google Scholar 

  133. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210, 541–603, 2000

    ADS  MathSciNet  MATH  Google Scholar 

  134. Shnirelman, A.: Microglobal analysis of the Euler equations. J. Math. Fluid Mech. 7, S387–S396, 2005

    MathSciNet  MATH  Google Scholar 

  135. Shnirelman, A.: On the analyticity of particle trajectories in the ideal incompressible fluid. Glob. Stoch. Anal. 2(2), 149–157, 2015 arXiv:1205.5837

    MATH  Google Scholar 

  136. Shnirelman, A.: On the long time behavior of fluid flows. Procedia IUTAM 7, 151–160, 2013

    Google Scholar 

  137. Simó, E.: The \(N\)-vortex problem on the projective plane. Undergraduate Thesis, Polyt. Univ. Catalonia and Univ. Toronto, 2022

  138. Sueur, F.: 2D incompressible Euler system in presence of sources and sinks. CAM Colloquium, PennState, March 15, 2021

  139. Tao, T.: On the universality of the incompressible Euler equation on compact manifolds. Discrete Contin. Dyn. Syst. 38(3), 1553–1565, 2018

    MathSciNet  MATH  Google Scholar 

  140. Tauchi, T., Yoneda, T.: Existence of a conjugate point in the incompressible Euler flow on an ellipsoid. J. Math. Soc. Jpn. 74(2), 629–653, 2022 arXiv:1907.08365

    MathSciNet  MATH  Google Scholar 

  141. Tauchi, T., Yoneda, T.: Arnold stability and Misiołek curvature. Monatshefte für Mathematik 199(2), 1–19, 2022 arXiv:2110.04680

    MathSciNet  MATH  Google Scholar 

  142. Torres de Lizaur, F.: Chaos in the incompressible Euler equation on manifolds of high dimension. Invent. Math. 228(4), 1–29, 2022 arXiv:2104.00647

    MathSciNet  MATH  Google Scholar 

  143. Vanneste, J.: Vortex dynamics on a Möbius strip. J. Fluid Mech. 923, A12, 2021 arXiv:2102.07697

    ADS  MATH  Google Scholar 

  144. Vishik, M.: Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal. (ARMA) 145, 197–214, 1998

    ADS  MathSciNet  MATH  Google Scholar 

  145. Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613–1617, 1994

    ADS  MathSciNet  Google Scholar 

  146. Wallstrom, T.C.: On the initial-value problem for the Madelung hydrodynamic equations. Phys. Lett. A 184, 229, 1994

    ADS  MathSciNet  MATH  Google Scholar 

  147. Washabaugh, P., Preston, S.: The geometry of axisymmetric ideal fluid flows with swirl. Arnold Math. J. 3, 175–185, 2016

    MathSciNet  MATH  Google Scholar 

  148. Weigant, W.A., Papin, A.A.: On the uniqueness of the solution of the flow problem with a given vortex. Math. Notes 96, 871–877, 2014

    MathSciNet  MATH  Google Scholar 

  149. Wolibner, W.: Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Zeit. 37, 698–726, 1933

    MathSciNet  MATH  Google Scholar 

  150. Yang, C.: Vortex motion of the Euler and Lake equations. J. Nonlinear Sci. 31(3), 48, 2021 arXiv:2009.12004

    ADS  MathSciNet  MATH  Google Scholar 

  151. Yudovich, V.: Non-stationary flows of an ideal incompressible fluid. Zhur. Vysch. Mat. Fiz. 3, 1032–1066, 1963 trans: Am. Math. Soc. Transl. (2) 56, 1966

  152. Yudovich, V.: Some bounds for solutions of elliptic equations. Mat. Sb. 59, 229–244, 1962

    MathSciNet  MATH  Google Scholar 

  153. Yudovich, V.: On the loss of smoothness of solutions of the Euler equations with time (Russian). Dinam. Splosh. Sredy 16, 71–78, 1974

    Google Scholar 

  154. Yudovich, V.: Uniqueness theorem for the nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2(1), 27–38, 1995

    MathSciNet  MATH  Google Scholar 

  155. Yudovich, V.: On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid. Chaos 10, 705–719, 2000

    ADS  MathSciNet  MATH  Google Scholar 

  156. Zeitlin, V.: Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local canonical structure. Physica D 49, 353–362, 1991

    ADS  MathSciNet  MATH  Google Scholar 

  157. Zheligovsky, V., Frisch, U.: Time-analyticity of Lagrangian particle trajectories in ideal fluid flow. J. Fluid Mech. 749, 404–430, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  158. Ziglin, S.L.: The nonintegrability of the problem on the motion of four vortices of finite strengths, appendix to K. Khanin. Physica D 4(2), 268–269, 1982

    MathSciNet  Google Scholar 

  159. Ziglin, S.L.: Dichotomy of the separatrices and the nonexistence of first integrals in systems of differential equations of Hamiltonian type with two degrees of freedom. Math. USSR Izv. 31(2), 407–421, 1988

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to the organizers of the IAS Symplectic Dynamics Program, where this paper was conceived, and in particular to Helmut Hofer for his constant encouragement. We are also grateful to Theodore Drivas and to the anonymous referee for many useful suggestions. B.K. was partially supported by a Simons Fellowship and an NSERC Discovery Grant. G.M. gratefully acknowledges support from the SCGP, Stony Brook University, where part of the work on this paper was done. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Khesin.

Additional information

Communicated by V. Šverák.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khesin, B., Misiołek, G. & Shnirelman, A. Geometric Hydrodynamics in Open Problems. Arch Rational Mech Anal 247, 15 (2023). https://doi.org/10.1007/s00205-023-01848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01848-x

Navigation