Skip to main content
Log in

Poiseuille Flow of Nematic Liquid Crystals via the Full Ericksen–Leslie Model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the Cauchy problem of the Poiseuille flow of the full Ericksen–Leslie model for nematic liquid crystals. The model is a coupled system of a parabolic equation for the velocity and a quasilinear wave equation for the director. For a particular choice of several physical parameter values, we construct solutions with smooth initial data and finite energy that produce, in finite time, cusp singularities—blowups of gradients. The formation of cusp singularity is due to local interactions of wave-like characteristics of solutions, which is different from the mechanism of finite time singularity formations for the parabolic Ericksen–Leslie system. The finite time singularity formation for the physical model might raise some concerns for purposes of applications. This is, however, resolved satisfactorily; more precisely, we are able to establish the global existence of weak solutions that are Hölder continuous and have bounded energy. One major contribution of this paper is our identification of the effect of the flux density of the velocity on the director and the reveal of a singularity cancellation—the flux density remains bounded while its two components approach infinity at formations of cusp singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bressan, A., Chen, G.: Lipschitz metric for a class of nonlinear wave equations. Arch. Ration. Mech. Anal. 226(3), 1303–1343, 2017

    Article  MathSciNet  Google Scholar 

  2. Bressan, A., Chen, G.: Generic regularity of conservative solutions to a nonlinear wave equation. Ann. I. H. Poincaré-AN34(2), 335–354, 2017

    Article  MathSciNet  Google Scholar 

  3. Bressan, A., Chen, G., Zhang, Q.: Unique conservative solutions to a variational wave equation. Arch. Ration. Mech. Anal. 217(3), 1069–1101, 2015

    Article  MathSciNet  Google Scholar 

  4. Bressan, A., Huang, T.: Representation of dissipative solutions to a nonlinear variational wave equation. Commun. Math. Sci. 14, 31–53, 2016

    Article  MathSciNet  Google Scholar 

  5. Bressan, A., Huang, T., Yu, F.: Structurally stable singularities for a nonlinear wave equation. Bull. Inst. Math. Acad. Sin. (N.S.)10(4), 449–478, 2015

    MathSciNet  MATH  Google Scholar 

  6. Bressan, A., Zheng, Y.: Conservative solutions to a nonlinear variational wave equation. Commun. Math. Phys. 266, 471–497, 2006

    Article  ADS  MathSciNet  Google Scholar 

  7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York 2011

    MATH  Google Scholar 

  8. Cai, H., Chen, G., Du, Y.: Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal. J. Math. Pures Appl. 9(117), 185–220, 2018

    Article  MathSciNet  Google Scholar 

  9. Calderer, M., Liu, C.: Liquid crystal flow: dynamic and static configurations. SIAM J. Appl. Math. 60, 1925–1949, 2000

    Article  MathSciNet  Google Scholar 

  10. Chanderasekhar, S.: Liquid Crystals, 2nd edn. Cambridge University Press, Cambridge 1992

    Book  Google Scholar 

  11. Chen, G., Huang, T., Liu, C.: Finite time singularities for hyperbolic systems. SIAM J. Math. Anal. 47(1), 758–785, 2015

    Article  MathSciNet  Google Scholar 

  12. Chen, G., Zhang, P., Zheng, Y.: Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Commun. Pure Appl. Anal. 12(3), 1445–1468, 2013

    Article  MathSciNet  Google Scholar 

  13. Chen, G., Zheng, Y.: Singularity and existence to a wave system of nematic liquid crystals. J. Math. Anal. Appl. 398, 170–188, 2013

    Article  MathSciNet  Google Scholar 

  14. De Gennes, P. G., Prost, J.: The Physics of Liquid Crystals, 2nd Ed. International Series of Monographs on Physics, 83, Oxford Science Publications, Oxford, 1995

  15. Ericksen, J. L.: Equilibrium Theory of Liquid Crystals. Advances in Liquid Crystals (G. H. Brown, ed.), Vol. 2, 233–298. Academic Press, New York, 1976

    Google Scholar 

  16. Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378, 1962

    Article  MathSciNet  Google Scholar 

  17. Frank, F.C., Liquid Crystals, I.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28, 1958

    Article  Google Scholar 

  18. Glassey, R.T., Hunter, J.K., Zheng, Y.: Singularities in a nonlinear variational wave equation. J. Differ. Equ. 129, 49–78, 1996

    Article  ADS  Google Scholar 

  19. Hardt, R., Kinderlehrer, D.: Mathematical questions of liquid crystal theory. In Theory and applications of liquid crystals (Minneapolis, Minn., 1985). IMA Vol. Math. Appl. Vol. 5, 151–184, Springer, New York, 1987.

  20. Holden, H., Raynaud, X.: Global semigroup of conservative solutions of the nonlinear variational wave equation. Arch. Ration. Mech. Anal. 201, 871–964, 2011

    Article  MathSciNet  Google Scholar 

  21. Hong, M.C., Xin, Z.P.: Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in \({\mathbb{R}}^{2}\). Adv. Math. 231, 1364–1400, 1012

    Article  Google Scholar 

  22. Huang, J.R., Lin, F.H., Wang, C.Y.: Regularity and existence of global solutions to the Ericksen–Leslie system in \(\mathbb{R}^2\). Commun. Math. Phys. 331(2), 805–850, 2014

    Article  ADS  Google Scholar 

  23. Huang, T., Lin, F.H., Liu, C., Wang, C.Y.: Finite time singularity of the nematic liquid crystal flow in dimension three. Arch. Ration. Mech. Anal. 221, 1223–1254, 2016

    Article  MathSciNet  Google Scholar 

  24. Jiang, N., Luo, Y.L.: On well-posedness of Ericksen–Leslie’s hyperbolic incompressible liquid crystal model. SIAM J. Math. Anal. 51(1), 403–434, 2019

    Article  MathSciNet  Google Scholar 

  25. Lai, C. C., Lin, F. H., Wang, C. Y., Wei, J. C., Zhou, Y. F.: Finite time blow-up for the nematic liquid crystal flow in dimension two. arXiv:1908.10955, 2019

  26. Leslie, F.M.: Some thermal effects in cholesteric liquid crystals. Proc. R. Soc. A. 307, 359–372, 1968

    ADS  Google Scholar 

  27. Leslie, F. M.: Theory of Flow Phenomena in Liquid Crystals. Advances in Liquid Crystals, Vol. 4, 1–81. Academic Press, New York, 1979.

  28. Li, J.K., Titi, E., Xin, Z.P.: On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in \(\mathbb{R}^2\). Math. Models Methods Appl. Sci. 26(4), 803–822, 2016

    Article  MathSciNet  Google Scholar 

  29. Li, T.T.: Global Classical Solutions for Quasilinear Hyperbolic Systems, Research in Applied mathematics 32, Wiley-Masson, 1994.

  30. Li, T.T., Yu, W.: Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Mathematics Series, Durham 1985

    MATH  Google Scholar 

  31. Lin, F.H.: Nonlinear theory of defects in nematic liquid crystals; phase transition and phenomena. Commun. Pure Appl. Math. 42, 789–814, 1989

    Article  MathSciNet  Google Scholar 

  32. Lin, F.H., Lin, J.Y., Wang, C.Y.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336, 2010

    Article  MathSciNet  Google Scholar 

  33. Lin, F.H., Liu, C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14, 289–330, 2001

    MathSciNet  MATH  Google Scholar 

  34. Lin, F.H., Wang, C.Y.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69, 1532–1571, 2016

    Article  MathSciNet  Google Scholar 

  35. Lin, F.H., Wang, C.Y.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Ann. Math. Ser. B31, 921–938, 2010

    Article  MathSciNet  Google Scholar 

  36. Lin, F.H., Wang, C.Y.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029), 20130361, 18, 2014

    Article  MathSciNet  Google Scholar 

  37. Olsen, H.H., Holden, H.: The Kolmogorov-Riesz compactness theorem. Expositiones Mathematicae28, 385–394, 2010

    Article  MathSciNet  Google Scholar 

  38. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29(140), 883–899, 1933

    Article  Google Scholar 

  39. Parodi, O.: Stress tensor for a nematic liquid crystal. J. Phys. 31, 581–584, 1970

    Article  Google Scholar 

  40. Wang, M., Wang, W.D.: Global existence of weak solution for the 2-D Ericksen-Leslie system. Calc. Var. Partial Differ. Equ. 51(3–4), 915–962, 2014

    Article  MathSciNet  Google Scholar 

  41. Wang, W., Zhang, P.W., Zhang, Z.F.: Well-posedness of the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 210(3), 837–855, 2013

    Article  MathSciNet  Google Scholar 

  42. Zhang, P., Zheng, Y.: Weak solutions to a nonlinear variational wave equation. Arch. Ration. Mech. Anal. 166, 303–319, 2003

    Article  MathSciNet  Google Scholar 

  43. Zhang, P., Zheng, Y.: Conservative solutions to a system of variational wave equations of nematic liquid crystals. Arch. Ration. Mech. Anal. 195, 701–727, 2010

    Article  MathSciNet  Google Scholar 

  44. Zhang, P., Zheng, Y.: Energy conservative solutions to a one-dimensional full variational wave system. Commun. Pure Appl. Math. 55, 582–632, 2012

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

G. Chen’s research is partially supported by NSF grant DMS-1715012, T. Huang’s research is partially supported by NSFC Grant 11601333 and Shanghai NSF Grant 16ZR1423800, and W. Liu’s research is partially supported by Simons Foundation Mathematics and Physical Sciences-Collaboration Grants for Mathematicians #581822.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Huang.

Additional information

Communicated by F. Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1. Derivation of System (2.1)

We consider the following form of solutions to the system (1.10)

$$\begin{aligned} \mathbf{u}(x,t)=(0,0,u(x,t))^T\; \text{ and } \; \mathbf{n}(x,t)=\big (\sin \theta (x,t), 0, \cos \theta (x,t)\big )^T. \end{aligned}$$

It is easy to see that \(\nabla \cdot \mathbf{u}(x,t)=0 \), and \(\mathbf{u}\cdot \nabla \mathbf{u}=\mathbf{u}\cdot \nabla \mathbf{n}=\mathbf{u}\cdot \nabla \dot{\mathbf{n}}=0\). Direct computation implies

$$\begin{aligned} D= & {} \frac{1}{2}(\nabla \mathbf{u}+\nabla ^T\mathbf{u})=\frac{1}{2} \left[ \begin{array}{ccc} 0&{}0&{}u_x\\ 0&{}0&{}0\\ u_x&{}0&{}0 \end{array} \right] , \\ \omega= & {} \frac{1}{2}(\nabla \mathbf{u}-\nabla ^T\mathbf{u})=\frac{1}{2} \left[ \begin{array}{ccc} 0&{}0&{}-u_x\\ 0&{}0&{}0\\ u_x&{}0&{}0 \end{array} \right] , \\ \mathbf{n}\otimes \mathbf{n}= & {} \left[ \begin{array}{ccc} \sin ^2\theta &{}0&{}\sin \theta \cos \theta \\ 0&{}0&{}0\\ \sin \theta \cos \theta &{}0&{}\cos ^2\theta \end{array} \right] . \end{aligned}$$

Then

$$\begin{aligned} N= & {} \dot{\mathbf{n}}-\omega \mathbf{n}=\left( \theta _t+\frac{1}{2}u_x\right) \big (\cos \theta , 0,- \sin \theta \big )^T, \\ N\otimes \mathbf{n}= & {} \left( \theta _t+\frac{1}{2}u_x\right) \left[ \begin{array}{ccc} \sin \theta \cos \theta &{}0&{}\cos ^2\theta \\ 0&{}0&{}0\\ -\sin ^2\theta &{}0&{}-\sin \theta \cos \theta \end{array} \right] , \\ \mathbf{n}\otimes N= & {} \left( \theta _t+\frac{1}{2}u_x\right) \left[ \begin{array}{ccc} \sin \theta \cos \theta &{}0&{}-\sin ^2\theta \\ 0&{}0&{}0\\ \cos ^2\theta &{}0&{}-\sin \theta \cos \theta \end{array} \right] , \end{aligned}$$

and also

$$\begin{aligned} D\mathbf{n}= & {} \frac{1}{2}u_x\big (\cos \theta , 0,\sin \theta \big )^T, \\ \mathbf{n}^TD\mathbf{n}=u_x\cos \theta \sin \theta , \\ D\mathbf{n}\otimes \mathbf{n}= & {} \frac{1}{2}u_x \left[ \begin{array}{ccc} \sin \theta \cos \theta &{}0&{}\cos ^2\theta \\ 0&{}0&{}0\\ \sin ^2\theta &{}0&{}\sin \theta \cos \theta \end{array} \right] , \\ \mathbf{n}\otimes D\mathbf{n}= & {} \frac{1}{2}u_x \left[ \begin{array}{ccc} \sin \theta \cos \theta &{}0&{}\sin ^2\theta \\ 0&{}0&{}0\\ \cos ^2\theta &{}0&{}\sin \theta \cos \theta \end{array} \right] . \end{aligned}$$

Hence

$$\begin{aligned} \begin{aligned} \mathbf{g}=&\gamma _1N+\gamma _2D\mathbf{n}\\ =&\gamma _1\theta _t\big (\cos \theta , 0,- \sin \theta \big )^T+\frac{1}{2}u_x\big ((\gamma _1+\gamma _2)\cos \theta , 0,(\gamma _2-\gamma _1) \sin \theta \big )^T. \end{aligned} \end{aligned}$$

Since the last term in Oseen-Frank energy density is null Lagrangian term, without loss of generalization, we only compute the first three terms. The Oseen-Frank energy density of this case will be

$$\begin{aligned} W(\mathbf{n},\nabla \mathbf{n})=K_1(\mathbf{n}^1_x)^2+K_3\big ((\mathbf{n}^1\mathbf{n}^1_x)^2+(\mathbf{n}^1\mathbf{n}^3_x)^2\big )=\frac{1}{2}\theta ^2_x\big (K_1\cos ^2\theta +K_3\sin ^2\theta \big ), \end{aligned}$$

where \(\mathbf{n}^i\) is the i-th component of \(\mathbf{n}\). Thus

$$\begin{aligned} \frac{\partial W}{\partial \mathbf{n}}= & {} \big (K_3\theta _x^2\sin \theta , 0,0\big )^T, \\ \frac{\partial W}{\partial \nabla \mathbf{n}}= & {} \left[ \begin{array}{ccc} K_1\theta _x\cos \theta +K_3\theta _x\sin ^2\theta \cos \theta &{}0&{}0\\ 0&{}0&{}0\\ -K_3\theta _x\sin ^3\theta &{}0&{}0 \end{array} \right] . \end{aligned}$$

The Lagrangian constant is

$$\begin{aligned} \begin{aligned} \gamma =&\frac{\partial W}{\partial \mathbf{n}}\cdot \mathbf{n}+\gamma _2D\mathbf{n}\cdot \mathbf{n}-\nabla \cdot \left( \frac{\partial W}{\partial \nabla \mathbf{n}}\right) \cdot \mathbf{n}-|\mathbf{n}_t|^2\\ =&(K_1+2K_3)\theta _x^2\sin ^2\theta -K_1\theta _{xx}\sin \theta \cos \theta +\gamma _2u_x\sin \theta \cos \theta -|\theta _t|^2. \end{aligned} \end{aligned}$$

We are ready to derive the system (2.1). We first work on the equation of \(\theta \). By the third equation of (1.10), we have

$$\begin{aligned} \begin{aligned} \mathbf{n}_{tt}=&\theta _{tt}\big (\cos \theta ,0,-\sin \theta \big )^T+|\theta _t|^2\big (-\sin \theta ,0,-\cos \theta \big )^T\\ =&\gamma \mathbf{n}-\frac{\partial W}{\partial \mathbf{n}}-\mathbf{g}+\nabla \cdot \left( \frac{\partial W}{\partial \nabla \mathbf{n}}\right) \\ =&-|\theta _t|^2\big (\sin \theta ,0,\cos \theta \big )^T-\gamma _1\theta _t\big (\cos \theta , 0,- \sin \theta \big )^T\\&+u_x{{\mathbf {T}}_1}+K_1{\mathbf {T}}_2+K_3{\mathbf {T}}_3. \end{aligned} \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned} (\theta _{tt}+\gamma _1\theta _t)\big (\cos \theta ,0,-\sin \theta \big )^T =u_x{{\mathbf {T}}_1}+K_1{\mathbf {T}}_2+K_3{\mathbf {T}}_3. \end{aligned} \end{aligned}$$
(A.1)

Here the vector \({\mathbf {T}}_1\) is given by

$$\begin{aligned} {\mathbf {T}}_1=&\gamma _2\sin \theta \cos \theta \big (\sin \theta , 0,\cos \theta \big )^T-\frac{1}{2}\big ((\gamma _1+\gamma _2)\cos \theta , 0,(\gamma _2-\gamma _1) \sin \theta \big )^T\nonumber \\ =&-\frac{\gamma _1}{2}\big (\cos \theta , 0,-\sin \theta \big )^T\nonumber \\&+\frac{\gamma _2}{2}\big (2\sin ^2\theta \cos \theta -\cos \theta , 0,2\sin \theta \cos ^2\theta -\sin \theta \big )^T\nonumber \\ =&\left( -\frac{\gamma _1}{2}-\frac{\gamma _2}{2}\cos (2\theta )\right) \big (\cos \theta , 0,-\sin \theta \big )^T. \end{aligned}$$
(A.2)

The nonzero components of vector \({\mathbf {T}}_2\) is given by

$$\begin{aligned} {\mathbf {T}}_2^1=&\theta _x^2\sin ^3\theta -\theta _{xx}\sin ^2\theta \cos \theta +(\theta _x\cos \theta )_x\\ =&-\sin ^2\theta (\theta _x\cos \theta )_x+(\theta _x\cos \theta )_x =\cos ^2\theta (\theta _x\cos \theta )_x,\\ {\mathbf {T}}_2^3=&\theta _x^2\sin ^2\theta \cos \theta -\theta _{xx}\sin \theta \cos ^2\theta =-\sin \theta \cos \theta (\theta _x\cos \theta )_x, \end{aligned}$$

so the vector \({\mathbf {T}}_2\) is

$$\begin{aligned} \begin{aligned} {\mathbf {T}}_2= \cos \theta (\theta _x\cos \theta )_x\big (\cos \theta , 0,-\sin \theta \big )^T. \end{aligned} \end{aligned}$$
(A.3)

Similarly, the vector \({\mathbf {T}}_3\) is

$$\begin{aligned} \begin{aligned} {\mathbf {T}}_3= \sin \theta (\theta _x\sin \theta )_x\big (\cos \theta , 0,-\sin \theta \big )^T. \end{aligned} \end{aligned}$$
(A.4)

Plugging (A.2), (A.3) and (A.4) into (A.1), we obtain

$$\begin{aligned} \theta _{tt}+\gamma _1\theta _t=K_1\cos \theta (\theta _x\cos \theta )_x +K_3\sin \theta (\theta _x\sin \theta )_x+\left( -\frac{\gamma _1}{2} -\frac{\gamma _2}{2}\cos (2\theta )\right) u_x, \end{aligned}$$

which is exactly the second equation in (2.1).

For the equation of u, direct computation gives

$$\begin{aligned} \nabla \cdot \left( \frac{\partial W}{\partial \nabla \mathbf{n}}\otimes \nabla \mathbf{n}\right) =\big ((K_1\theta _x^2\cos ^2\theta )_x+(K_3\theta _x^2\sin ^2\theta )_x, 0,0\big )^T \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \nabla \cdot \sigma =&\alpha _1\big ((u_x\sin ^3\theta \cos \theta )_x,0,(u_x\sin ^2\theta \cos ^2\theta )_x\big )^T\\&+\alpha _2\left( \big (\big (\theta _t+\frac{1}{2}u_x\big )\sin \theta \cos \theta \big )_x,0, -\big (\big (\theta _t+\frac{1}{2}u_x\big )\sin ^2\theta \big )_x\right) ^T\\&+\alpha _3\left( \big ( \big (\theta _t+\frac{1}{2}u_x\big )\sin \theta \cos \theta \big )_x,0, \big (\big (\theta _t+\frac{1}{2}u_x\big )\cos ^2\theta \big )_x\right) ^T\\&+\frac{\alpha _4}{2}\big (0,0, u_{xx}\big )^T +\frac{\alpha _5}{2}\big ((u_x\sin \theta \cos \theta )_x,0,(u_x\sin ^2\theta )_x\big )^T\\&+\frac{\alpha _6}{2}\big ((u_x\sin \theta \cos \theta )_x,0,(u_x\cos ^2\theta )_x\big )^T. \end{aligned} \end{aligned}$$

Therefore the first equation of system (1.10) can be written into following three equations:

$$\begin{aligned} P_x=&K_1(\theta _x^2\cos ^2\theta )_x+K_3(\theta _x^2\sin ^2\theta )_x+\alpha _1(u_x\sin ^3\theta \cos \theta )_x\nonumber \\&+\frac{1}{2}\left( \alpha _2+\alpha _3+\alpha _5+\alpha _6\right) (u_x\sin \theta \cos \theta )_x+(\alpha _2+\alpha _3)\big (\theta _t\sin \theta \cos \theta \big )_x, \end{aligned}$$
(A.5)
$$\begin{aligned} P_y=&0, \end{aligned}$$
(A.6)
$$\begin{aligned} u_t+P_z=&\frac{\alpha _4}{2}u_{xx} +\alpha _1(u_x\sin ^2\theta \cos ^2\theta )_x -\alpha _2\big (\big (\theta _t+\frac{1}{2}u_x\big )\sin ^2\theta \big )_x\nonumber \\&+\alpha _3\big (\big (\theta _t+\frac{1}{2}u_x\big )\cos ^2\theta \big )_x +\frac{\alpha _5}{2}(u_x\sin ^2\theta )_x +\frac{\alpha _6}{2}(u_x\cos ^2\theta )_x. \end{aligned}$$
(A.7)

By these equations, one can obtain that \(P_z=a\) for some constant a. The right hand side of (A.7) can be rewritten as \((g(\theta )u_x+h(\theta )\theta _t)_x\) where \(g(\theta )\) and \(h(\theta )\) is defined as (2.2). Therefore, we obtain the first equation of (2.1).

1.2 A.2. Derivation of System (5.9)

We will in fact derive the semilinear system in XY-coordinates for (2.1) with \(\nu =\rho =1\) and \(a=0\). Recall, from (5.5) and (5.6), that we have introduced

$$\begin{aligned} w=2\arctan R,\quad z=2\arctan S, \quad p=\frac{1+R^2}{X_x},\quad q=-\frac{1+S^2}{Y_x}. \end{aligned}$$

It is easy to have that

$$\begin{aligned} R= & {} \tan \frac{w}{2},\quad \frac{R}{1+R^2}=\frac{1}{2}\sin w, \quad \frac{1}{1+R^2}=\cos ^2\frac{w}{2}, \\ S= & {} \tan \frac{z}{2}, \quad \frac{S}{1+S^2}=\frac{1}{2}\sin z, \quad \frac{1}{1+S^2}=\cos ^2\frac{z}{2}. \end{aligned}$$

By (5.4) and (4.2), we have

$$\begin{aligned} \theta _X=\frac{\sin w}{4c}p,\quad \theta _Y=\frac{\sin z}{4c}q. \end{aligned}$$

Denote

$$\begin{aligned} U=h(\theta )u_x. \end{aligned}$$

By (4.2), we have

$$\begin{aligned} \left\{ \begin{array}{rcl} (S^2)_t+c(\theta )(S^2)_x &{}=&{} \frac{c'}{2c}(S^3-R^2S)-\gamma _1(RS+S^2)-2SU,\\ (R^2)_t-c(\theta )(R^2)_x &{}=&{} \frac{c'}{2c} (R^3-RS^2)-\gamma _1(RS+R^2)-2RU, \end{array}\right. \end{aligned}$$
(A.8)

so

$$\begin{aligned} \left\{ \begin{array}{rcl} (S^2)_X &{}=&{} \frac{1}{2c}p\frac{1}{1+R^2}\Big \{\frac{c'}{2c}(S^3-R^2S)-\gamma _1(RS+S^2)-2SU\Big \},\\ (R^2)_Y &{}=&{} \frac{1}{2c}q\frac{1}{1+S^2}\Big \{\frac{c'}{2c} (R^3-RS^2)-\gamma _1(RS+R^2)-2RU\Big \}. \end{array}\right. \end{aligned}$$
(A.9)

Hence,

$$\begin{aligned} \begin{aligned} z_X=&\textstyle \frac{1}{1+S^2}\frac{1}{S}(S^2)_X \\ =&\textstyle \frac{1}{2c}p\frac{1}{(1+R^2)(1+S^2)}\Big \{\frac{c'}{2c}(S^2-R^2)-\gamma _1(R+S)-2U\Big \} \\ =&\textstyle p \Big \{\frac{c'}{4c^2}\Big (\cos ^2\frac{w}{2}-\cos ^2\frac{z}{2}\Big )-\frac{\gamma _1}{4c}\Big (\sin w\cos ^2\frac{z}{2}+\sin z\cos ^2\frac{w}{2}\Big )\\&-\frac{1}{c}\cos ^2\frac{z}{2}\cos ^2\frac{w}{2}U\Big \} . \end{aligned} \end{aligned}$$

Similarly,

$$\begin{aligned} \textstyle w_Y= & {} q \Big \{\frac{c'}{4c^2}\Big (\cos ^2\frac{z}{2}-\cos ^2\frac{w}{2}\Big )-\frac{\gamma _1}{4c} \Big (\sin w\cos ^2\frac{z}{2}+\sin z\cos ^2\frac{w}{2}\Big )\\&-\frac{1}{c}\cos ^2\frac{z}{2}\cos ^2\frac{w}{2}U\Big \}. \end{aligned}$$

On the other hand, using \(X_t-cX_x=0\), we have

$$\begin{aligned} X_{tx}-cX_{xx}=\frac{c'}{2c}(R-S)X_x. \end{aligned}$$

Then

$$\begin{aligned} p_Y =&\textstyle \frac{1}{X_x}(R^2)_Y-\frac{q\cos ^2{\frac{w}{2}}}{2c}\frac{1+R^2}{X_x^2}(X_{xt}-cX_{xx}) \\ =&\textstyle \frac{pq}{2c}\frac{1}{(1+R^2)(1+S^2)}\Big \{\frac{c'}{2c} (R^3-RS^2)-\gamma _1(RS+R^2)-2RU\Big \} -\frac{pq}{2c}\frac{c'}{2c}\frac{R-S}{1+S^2}\\ =&\textstyle \frac{pq}{2c}\frac{1}{(1+R^2)(1+S^2)}\Big \{\frac{c'}{2c} (-R-RS^2)-\gamma _1(RS+R^2)-2RU\Big \} +\frac{pq}{2c}\frac{c'}{2c}\frac{S}{1+S^2}\\ =&\textstyle pq\frac{c'}{8c^2}(\sin z-\sin w) -\gamma _1\frac{pq}{2c}\Big [\frac{1}{4}\sin w\sin z+\sin ^2 \frac{w}{2}\cos ^2\frac{z}{2}\Big ]\\&-\frac{pq}{2c}U\sin w\cos ^2\frac{z}{2}. \end{aligned}$$

Similarly, we have

$$\begin{aligned} q_X= & {} \textstyle pq\frac{c'}{8c^2}(\sin w-\sin z) -\gamma _1\frac{pq}{2c}\Big [\frac{1}{4}\sin w\sin z+\sin ^2 \frac{z}{2}\cos ^2\frac{w}{2}\Big ]\\&-\frac{pq}{2c}U\sin z\cos ^2\frac{w}{2}. \end{aligned}$$

In summary, we have the following system of equations:

$$\begin{aligned} \begin{aligned} \theta _X\textstyle =&\frac{\sin w}{4c}p,\qquad \theta _Y=\frac{\sin z}{4c}q\\ z_X&\textstyle =p \Big \{\frac{c'}{4c^2}\Big (\cos ^2\frac{w}{2}-\cos ^2\frac{z}{2}\Big ) -\frac{\gamma _1}{4c}\Big (\sin w\cos ^2\frac{z}{2}+\sin z\cos ^2\frac{w}{2}\Big )\\&-\frac{1}{c}\cos ^2\frac{z}{2}\cos ^2\frac{w}{2}U\Big \} \\ w_Y\textstyle =&q \Big \{\frac{c'}{4c^2}\Big (\cos ^2\frac{z}{2}-\cos ^2\frac{w}{2}\Big ) -\frac{\gamma _1}{4c}\Big (\sin w\cos ^2\frac{z}{2}+\sin z\cos ^2\frac{w}{2}\Big )\\&-\frac{1}{c}\cos ^2\frac{z}{2}\cos ^2\frac{w}{2}U\Big \} \\ p_Y\textstyle =&pq\frac{c'}{8c^2}(\sin z-\sin w) -\gamma _1\frac{pq}{2c}\Big [\frac{1}{4}\sin w\sin z+\sin ^2 \frac{w}{2}\cos ^2\frac{z}{2}\Big ]\\&-\frac{pq}{2c}U\sin w\cos ^2\frac{z}{2}\\ q_X\textstyle =&pq\frac{c'}{8c^2}(\sin w-\sin z) -\gamma _1\frac{pq}{2c}\Big [\frac{1}{4}\sin w\sin z+\sin ^2 \frac{z}{2}\cos ^2\frac{w}{2}\Big ] \\&-\frac{pq}{2c}U\sin z\cos ^2\frac{w}{2}, \end{aligned} \end{aligned}$$

where recall that \(U=h(\theta )u_x.\)

Denote \(J=g(\theta )u_x+h(\theta )\theta _t\). Then

$$\begin{aligned} U=\frac{h(\theta )}{g(\theta )}(J-h(\theta )\theta _t). \end{aligned}$$

In terms of the variable J, the above system is

$$\begin{aligned} \theta _X=&\frac{\sin w}{4c}p,\quad \theta _Y=\frac{\sin z}{4c}q \nonumber \\ \textstyle z_X=&p \Big \{\frac{c'}{4c^2}\Big (\cos ^2\frac{w}{2}-\cos ^2\frac{z}{2}\Big ) +\frac{\frac{h^2(\theta )}{g(\theta )}-\gamma _1}{4c} \Big (\sin w\cos ^2\frac{z}{2}+\sin z\cos ^2\frac{w}{2}\Big )\nonumber \\&-\frac{h(\theta )}{cg(\theta )}J\cos ^2\frac{z}{2}\cos ^2\frac{w}{2} \Big \} \nonumber \\ \textstyle w_Y=&q \Big \{\frac{c'}{4c^2} \Big (\cos ^2\frac{z}{2}-\cos ^2\frac{w}{2}\Big ) +\frac{\frac{h^2(\theta )}{g(\theta )}-\gamma _1}{4c} \Big (\sin w\cos ^2\frac{z}{2}+\sin z\cos ^2\frac{w}{2}\Big )\nonumber \\&-\frac{h(\theta )}{cg(\theta )}J\cos ^2\frac{z}{2}\cos ^2\frac{w}{2}\Big \} \nonumber \\ \textstyle p_Y=&pq\Big \{\frac{c'}{8c^2}(\sin z-\sin w) +\frac{\frac{h^2(\theta )}{g(\theta )}-\gamma _1}{2c}\Big (\frac{1}{4}\sin w\sin z+\sin ^2 \frac{w}{2}\cos ^2\frac{z}{2}\Big )\nonumber \\&-\frac{h(\theta )}{2cg(\theta )}J\sin w\cos ^2\frac{z}{2}\Big \}\nonumber \\ \textstyle q_X=&pq\Big \{\frac{c'}{8c^2}(\sin w-\sin z) +\frac{\frac{h^2(\theta )}{g(\theta )}-\gamma _1}{2c}\Big (\frac{1}{4}\sin w\sin z+\sin ^2 \frac{z}{2}\cos ^2\frac{w}{2}\Big )\nonumber \\&-\frac{h(\theta )}{2cg(\theta )}J\sin z\cos ^2\frac{w}{2}\Big \}, \end{aligned}$$
(A.10)

where the coefficient \(\frac{h^2(\theta )}{g(\theta )}-\gamma _1<0\) by (2.11).

For the special case where \(\gamma _1=2\), \(\gamma _2=0\) and \(g(\theta )=h(\theta )=1\), system (A.10) reduces to system (5.9).

1.3 A.3. Hölder Continuity of \({\mathcal {M}}(J)\) in §6.3

First, we consider three types of integrals in the definition of J in (6.31):

$$\begin{aligned} L_i(x,t):=&\int _{\mathbb {R}}H(x-y,t)f(y)\,\mathrm{d}y \\ L_{ii}(x,t):=&\int _0^t\int _{\mathbb R}H(x-y,t-s)g(y,s)\,\mathrm{d}y\mathrm{d}s\\ L_{iii}(x,t):=&\int _0^t\int _{\mathbb R}H_x(x-y,t-s)f(y,s)\,\mathrm{d}y\mathrm{d}s. \end{aligned}$$

We first prove the following lemma, working generally:

Lemma A.1

If \(f(x,t)\in L^{\infty }([0,T], L^2(\mathbb {R}))\), \(g(x,t)\in L^{\infty }([0,T], L^1(\mathbb {R}))\) or \(g(x,t)\in L^{\infty }([0,T], L^2(\mathbb {R}))\) we have \(L_j(x,t)\) is Hölder continuous w.r.t x and t, for all \(j=i,ii,iii\), with exponent \(\beta \in (0,\frac{1}{4})\).

Proof

We only provide the proof of Hölder continuity w.r.t x for \(L_{iii}\), the rest cases can be proved similarly. For any \(x_1<x_2\), it is sufficient to show that

$$\begin{aligned}&\left| \int _0^t\int _{\mathbb {R}} \frac{H_y(x_2-y,t-s)-H_y(x_1-y,t-s)}{(x_2-x_1)^\beta }f(y,s) \mathrm{d}y\mathrm{d}s\right| \nonumber \\&\quad \leqq \hbox {Constant}\, \cdot \, t^{\frac{1}{4}-\frac{\beta }{2}} \end{aligned}$$
(A.11)

for some \(\beta \in (0,1)\). Since

$$\begin{aligned}&H_x(x,t)\\&\quad =-\frac{1}{4\sqrt{\pi }}\frac{x}{t^{3/2}}\exp \left( -\frac{x^2}{4t}\right) ,\\&H_x(x_2-y,t-s)-H_x(x_1-y,t-s)\\&\quad =-\frac{1}{4\sqrt{\pi }}\frac{1}{(t-s)^{3/2}} \left\{ (x_2-x_1)\exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) \right. \\&\qquad -\left. (x_1-y)\left[ \exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) -\exp \left( -\frac{(x_1-y)^2}{4(t-s)}\right) \right] \right\} \\&\quad :=I_1+I_2. \end{aligned}$$

The integral related to the first term \(I_1\) can be estimated as follows:

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}(x_2-x_1)^{1-\beta }\exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s \nonumber \\&\quad \leqq C\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}\left( |x_2-y|^{1-\beta }+|x_1-y|^{1-d}\right) \nonumber \\&\qquad \exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s. \end{aligned}$$
(A.12)

By the same argument in (3.9), and choosing \(0<\beta <\frac{1}{8}\), the first term in (A.12) should be controlled by

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}|x_2-y|^{1-\beta }\exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s\nonumber \\&\quad \leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}\Vert f\Vert _{L^{\infty }((0,T), L^2(\mathbb {R}))}. \end{aligned}$$
(A.13)

For the second term in (A.12),

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}|x_1-y|^{1-\beta }\exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s\nonumber \\&\quad \leqq C\left( \int _0^t\int _{\mathbb {R}}\frac{|x_1-y|^{2(1-\beta )}}{(t-s)^{9/4-\beta /2}} \exp \left( -\frac{(x_2-y)^2}{2(t-s)}\right) \,\mathrm{d}y\mathrm{d}s\right) ^{\frac{1}{2}}\nonumber \\&\qquad \left( \int _0^t\int _{\mathbb {R}}\frac{|f(y,s)|^2}{(t-s)^{3/4+\beta /2}}\,\mathrm{d}y\mathrm{d}s\right) ^{\frac{1}{2}}\nonumber \\&\quad \leqq C\left( \int _0^t\int _{\mathbb {R}}\frac{|\sqrt{t-s}u|^{2(1-\beta )}}{(t-s)^{7/4-\beta /2}}\exp \left( -\frac{u^2}{2}-\frac{x_2-x_1}{\sqrt{t-s}}u\right) \,\mathrm{d}u\mathrm{d}s \right) ^{\frac{1}{2}}\nonumber \\&\qquad \left( \int _0^t\int _{\mathbb {R}}\frac{|f(y,s)|^2}{(t-s)^{3/4+\beta /2}}\,\mathrm{d}y\mathrm{d}s\right) ^{\frac{1}{2}}\nonumber \\&\quad \leqq C\left( \int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}} \exp \left( -u\big (\frac{u}{2}+\frac{x_2-x_1}{\sqrt{t-s}}\big )\right) \,\mathrm{d}u\mathrm{d}s \right) ^{\frac{1}{2}}\nonumber \\&\qquad \left( \int _0^t\int _{\mathbb {R}}\frac{|f(y,s)|^2}{(t-s)^{3/4+\beta /2}}\,\mathrm{d}y\mathrm{d}s\right) ^{\frac{1}{2}}\nonumber \\&\quad \leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}\Vert f\Vert _{L^{\infty }((0,T), L^2(\mathbb {R}))}, \end{aligned}$$
(A.14)

where \(x_1-y=u\sqrt{t-s}\), and

$$\begin{aligned} \begin{aligned}&\exp \left( -\frac{(x_2-y)^2}{2(t-s)}\right) =\exp \left( -\frac{(x_2-x_1+x_1-y)^2}{2(t-s)}\right) \\&\quad =\exp \left( -\frac{(x_2-x_1)^2}{2(t-s)}\right) \cdot \exp \left( -\frac{2(x_2-x_1)(x_1-y)}{2(t-s)}\right) \cdot \exp \left( -\frac{(x_1-y)^2}{2(t-s)}\right) . \end{aligned} \end{aligned}$$

Putting (A.13) and (A.14) into (A.12), it holds that

$$\begin{aligned} \begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}(x_2-x_1)^{1-\beta }\exp \left( -\frac{(x_2-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s\\&\quad \leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}\Vert f\Vert _{L^{\infty }((0,T), L^2(\mathbb {R}))}. \end{aligned} \end{aligned}$$
(A.15)

On the other hand, by the mean value theorem, there exists a \(\xi \in (x_1,x_2)\) such that

$$\begin{aligned} \begin{aligned} e^{-\frac{(x_2-y)^2}{4(t-s)}}-e^{-\frac{(x_1-y)^2}{4(t-s)}} =&-e^{-\frac{(\xi -y)^2}{4(t-s)}} \frac{\xi -y}{2(t-s)}(x_2-x_1)\\ \leqq&-e^{-\frac{(x_1-y)^2}{4(t-s)}}\frac{x_1-y}{2(t-s)}(x_2-x_1). \end{aligned} \end{aligned}$$

Hence, for the term related to \(I_2\), it holds that

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}\frac{(x_1-y)^2}{t-s}(x_2-x_1)^{1-\beta }\exp \left( -\frac{(x_1-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s \nonumber \\&\quad \leqq C\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}\frac{(x_1-y)^2}{t-s}\left( |x_2-y|^{1-\beta } +|x_1-y|^{1-\beta }\right) \nonumber \\&\qquad \exp \left( -\frac{(x_1-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s. \end{aligned}$$
(A.16)

The second term is similar to (3.9) and (A.13):

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{5/2}}|x_1-y|^{3-\beta }\exp \left( -\frac{(x_1-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s\nonumber \\&\quad \leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}\Vert f\Vert _{L^{\infty }((0,T), L^2(\mathbb {R}))}. \end{aligned}$$
(A.17)

For the first term, one has

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}\frac{(x_1-y)^2}{t-s}|x_2-y|^{1-\beta }\exp \left( -\frac{(x_1-y)^2}{4(t-s)}\right) f(y,s)\,\mathrm{d}y\mathrm{d}s\nonumber \\&\quad \leqq C\left( \int _0^t\int _{\mathbb {R}}\frac{|x_2-y|^{2(1-\beta )}}{(t-s)^{9/4-d/2}}\frac{(x_1-y)^4}{(t-s)^2}\exp \left( -\frac{(x_1-y)^2}{2(t-s)}\right) \,\mathrm{d}y\mathrm{d}s\right) ^{\frac{1}{2}}\nonumber \\&\qquad \cdot \left( \int _0^t\int _{\mathbb {R}}\frac{|f(y,s)|^2}{(t-s)^{3/4+\beta /2}}\,\mathrm{d}y\mathrm{d}s\right) ^{\frac{1}{2}}. \end{aligned}$$
(A.18)

Let \(x_2-y=\sqrt{t-s}u\). Then it holds that

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-d)}}{(t-s)^{3/4+\beta /2}} \frac{(x_1-x_2+\sqrt{t-s}u)^4}{(t-s)^2}\nonumber \\&\qquad \exp \left( -\frac{(x_1-x_2+\sqrt{t-s}u)^2}{2(t-s)}\right) \,\mathrm{d}u\mathrm{d}s\nonumber \\&\quad \leqq C\int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}}\frac{(x_1-x_2)^4 +(\sqrt{t-s}u)^4}{(t-s)^2}\nonumber \\&\qquad \exp \left( -\frac{(x_1-x_2+\sqrt{t-s}u)^2}{2(t-s)}\right) \,\mathrm{d}u\mathrm{d}s. \end{aligned}$$
(A.19)

It is easy to see that

$$\begin{aligned} \begin{aligned}&\exp \left( -\frac{(x_1-x_2+\sqrt{t-s}u)^2}{2(t-s)}\right) \\&\quad =\exp \left( -\frac{(x_1-x_2)^2}{2(t-s)}\right) \exp \left( -\frac{(x_1-x_2)u}{\sqrt{t-s}}\right) \exp \left( -\frac{u^2}{2}\right) \\&\quad \leqq \exp \left( -\frac{u^2}{2}-\frac{(x_1-x_2)u}{\sqrt{t-s}}\right) . \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}}u^4\exp \left( -\frac{(x_1-x_2+\sqrt{t-s}u)^2}{2(t-s)}\right) \,\mathrm{d}u\mathrm{d}s\nonumber \\&\quad \leqq \int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}}u^4 \exp \left( -\frac{u^2}{2}-\frac{(x_1-x_2)u}{\sqrt{t-s}}\right) \,\mathrm{d}u\mathrm{d}s\leqq Ct^{\frac{1}{4}-\frac{\beta }{2}},\nonumber \\ \end{aligned}$$
(A.20)

and

$$\begin{aligned} \begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}}\frac{(x_1-x_2)^4}{(t-s)^2}\exp \left( -\frac{(x_1-x_2+\sqrt{t-s}u)^2}{2(t-s)}\right) \,\mathrm{d}u\mathrm{d}s\\&\quad =\int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}} \frac{(x_1-x_2)^4}{(t-s)^2} \exp \left( -\frac{(x_1-x_2)^2}{2(t-s)}\right) \\&\qquad \exp \left( -\frac{u^2}{2}-\frac{(x_1-x_2)u}{\sqrt{t-s}}\right) \,\mathrm{d}u\mathrm{d}s\\&\quad \leqq \int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-\beta )}}{(t-s)^{3/4+\beta /2}}u^4 \exp \left( -\frac{u^2}{2}-\frac{(x_1-x_2)u}{\sqrt{t-s}}\right) \,\mathrm{d}u\mathrm{d}s\leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}. \end{aligned} \end{aligned}$$
(A.21)

Putting (A.20) and (A.21) into (A.19), we obtain

$$\begin{aligned} \begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{|u|^{2(1-d)}}{(t-s)^{3/4+\beta /2}} \frac{(x_1-x_2+\sqrt{t-s}u)^4}{(t-s)^2}\\&\qquad \exp \left( -\frac{(x_1-x_2+\sqrt{t-s}u)^2}{2(t-s)}\right) \,\mathrm{d}u\mathrm{d}s\\&\quad \leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}. \end{aligned} \end{aligned}$$
(A.22)

Combining (A.22) with (A.17) and (A.18), we have

$$\begin{aligned}&\int _0^t\int _{\mathbb {R}}\frac{1}{(t-s)^{3/2}}\frac{(x_1-y)^2}{t-s}(x_2-x_1)^{1-\beta }\exp \left( -\frac{(x_1-y)^2}{4(t-s)}\right) |f(y,s)|\,\mathrm{d}y\mathrm{d}s\nonumber \\&\quad \leqq Ct^{\frac{1}{4}-\frac{\beta }{2}}\Vert f\Vert _{L^{\infty }((0,T), L^2(\mathbb {R}))}. \end{aligned}$$
(A.23)

It is easy to see that (A.15) and (A.23) imply (A.24).

Similarly, we can show the Hölder continuity of for \(L_{iii}\) in t , and

$$\begin{aligned} \left| \int _0^t\int _{\mathbb {R}} \frac{H_y(x_2-y,t-s)-H_y(x_1-y,t-s)}{(t_2-t_1)^\beta }f(y,s) \mathrm{d}y\mathrm{d}s\right| \leqq C t^{\frac{1}{4}-\beta }.\nonumber \\ \end{aligned}$$
(A.24)

The proof of Hölder continuity for other terms is similar, and all bounds include a factor \(t^{\frac{1}{4}-\beta }\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Huang, T. & Liu, W. Poiseuille Flow of Nematic Liquid Crystals via the Full Ericksen–Leslie Model. Arch Rational Mech Anal 236, 839–891 (2020). https://doi.org/10.1007/s00205-019-01484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01484-4

Navigation