Skip to main content
Log in

Strong Solutions to the Density-Dependent Incompressible Nematic Liquid Crystal Flows with Heat Effect

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, for the incompressible nematic liquid crystal flows with heat effect and density-dependent viscosity coefficient in three-dimensional bounded domain, by using the elliptic regularity result of the Stokes equations and the linearization and iteration method, we investigate the local existence and uniqueness of strong solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bian, D., Xiao, Y.: Global solution to the nematic liquid crystal flows with heat effect. J. Differ. Equ. 263, 5298–5329 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Breit, D., Feireisl, E., Hofmanová, M.: Martina Local strong solutions to the stochastic compressible Navier–Stokes system. Commun. Partial Differ. Equ. 43, 313–345 (2018)

    MATH  Google Scholar 

  3. Calderer, M.C., Golovaty, D., Lin, F., Liu, C.: Time evolution of nematic liquid crystals with variable degree of orientation. SIAM J. Math. Anal. 33, 1033–1047 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Chen, M., Zang, A.: On classical solutions to the Cauchy problem of the 2D compressible non-resistive MHD equations with vacuum states. Nonlinearity 30, 3637–3675 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier–Stokes equations. Nonlinear Anal. 59, 465–489 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Cho, Y., Kim, H.: Existence result for heat-conducting viscous incompressible fluids with vacuum. J. Korean. Math. Soc. 45, 645–681 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Dai, M., Qing, J., Schonbek, M.: Regularity of solutions to the liquid crystals systems in \({\mathbb{R}}^2\) and \({\mathbb{R}}^3\). Nonlinearity 25, 513–532 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Danchin, R.: Density-dependent incompressible fluids in bounded domains. J. Math. Fluid Mech. 8, 333–381 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Danchin, R.: Local and global well-posendness results for flows of inhomogeneous viscous fluids. Adv. Dffer. Equ. 9, 353–386 (2004)

    MATH  Google Scholar 

  10. Danchin, R., Mucha, P.B.: The incompressible Navier-Stokes equations in vacuum, arXiv:1705,06061v2

  11. Elliott, C.M., Zheng, S.: On the Cahn–Hilliard equation. Arch. Rational Mech. Anal. 96, 339–357 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    MathSciNet  Google Scholar 

  13. Ericksen, J.L.: Continuum theory of liquid crystals of nematic type. Mol. Cryst. 7, 153–164 (1969)

    Google Scholar 

  14. Fan, J., Alzahrani, F.S., Hayat, T., Nakamura, G., Zhou, Y.: Global regularity for the 2D liquid crystal model with mixed partial viscosity. Anal. Appl. (Singap.) 13, 185–200 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Fan, J., Li, J.: Regularity criteria for the strong solutions to the Ericksen-Leslie system in \({\mathbb{R}}^3\). J. Math. Anal. Appl. 425, 695–703 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Fan, J., Samet, B., Zhou, Y.: A regularity criterion for a density-dependent incompressible liquid crystals model with vacuum. Hiroshima Math. J. 49, 129–138 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Fan, J., Zhou, Y.: Uniform local well-posedness for an Ericksen-Leslie’s density-dependent parabolic-hyperbolic liquid crystals model. Appl. Math. Lett. 74, 79–84 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Fan, J., Zhou, Y.: A regularity criterion for a 3D density-dependent incompressible liquid crystals model. Appl. Math. Lett. 58, 119–124 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Fang, D., Zhang, T., Zi, R.: Global solutions to the isentropic compressible Navier–Stokes equations with a class of large initial data. SIAM J. Math. Anal. 50, 4983–5026 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Rational Mech. Anal. 205, 651–672 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Feireisl, E., Rocca, E., Schimperna, G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24, 243–257 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Friedman, A.: Partial Differ. Equ. Holt, Reinhart and Winston, New York (1969)

    Google Scholar 

  23. Gao, J., Tao, Q., Yao, Z.: Strong solutions to the density-dependent incompressible nematic liquid crystal flows. J. Differ. Equ. 260, 3691–3748 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Gong, H., Li, J., Xu, C.: Local well-posedness of strong solutions to density-dependent liquid crystal system. Nonlinear Anal. 147, 26–44 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Gu, W., Fan, J., Zhou, Y.: Regularity criteria for some simplified non-isothermal models for nematic liquid crystals. Comput. Math. Appl. 72, 2839–2853 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Hong, M., Xin, Z.: Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in \({\mathbb{R}}^2\). Adv. Math. 231, 1364–1400 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Hu, X., Wang, D.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Rational Mech. Anal. 197, 203–238 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Huang, J., Paicu, M., Zhang, P.: Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-Lipschitz velocity. Arch. Rational Mech. Anal. 209, 631–682 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Huang, X., Li, J., Xin, Z.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Commun Pure Appl. Math. 65, 549–585 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Huang, X., Wang, Y.: Global strong solution with vacuum to the two dimensional density-dependent Navier–Stokes system. SIAM J. Math. Anal. 46, 1771–1788 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Itoh, S., Tani, A.: Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity. Tokyo J. Math. 22, 17–42 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Kazhikhov, A.: Solvablity of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid. In: Doklady Akademii Nauk SSSR, vol. 216, pp. 1008–1010 (2974)

  33. Ladyzhenskaya, O., Solonnikov, V.A.: Unique solvability of an initial and boundary value problem for viscous incompressible non-homogeneous fluids. J. Soviet Math. 9, 89–96 (1978)

    MATH  Google Scholar 

  34. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Fluids. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  35. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28, 265–283 (1968)

    MathSciNet  MATH  Google Scholar 

  36. Li, L., Liu, Q., Zhong, X.: Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum. Nonlinearity 30, 4062–4088 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Li, J.: Local existence and uniqueness of strong solutions to the Navier–Stokes equations with nonnegative density. J. Differ. Equ. 263, 6512–6536 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Li, J.: Global strong and weak solutions to inhomogeneous nematic liquid crystal flow in two dimensions. Nonlinear Anal. 99, 80–94 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Li, J., Liang, Z.: On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum. J. Math. Pures Appl. 102, 640–671 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Li, J., Xin, Z.: Global existence of weak solutions to the non-isothermal nematic liquid crystals in 2D. Acta Math. Sci. 36, 973–1014 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Lin, F.: Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Comm. Pure Appl. Math. 42, 789–814 (1989)

    MathSciNet  MATH  Google Scholar 

  42. Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal. 197, 297–336 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Lin, F., Liu, C.: Nonparabolic dissipative ssytems modelling the flow of liquid crystals. Commun. Pure Appl. Math. 489, 501–537 (1995)

    MATH  Google Scholar 

  44. Lions, P.L.: Mathematical Topics in Fluid Mechanics: Volume I: Incpmpressible Models. Oxford University Press, Oxford (1996)

    Google Scholar 

  45. Liu, Y.: Global strong solutions for the incompressible nematic liquid crystal flows with density-dependent viscosity coefficient. J. Math. Anal. Appl. 462, 1381–1397 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Lv, B., Huang, B.: On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum. Nonlinearity 28, 509–530 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Lv, B., Shi, X., Xu, X.: Global existence and large-time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum. Indiana Univ. Math. J. 65, 925–975 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Lv, B., Xu, Z., Zhong, X.: On local strong solutions to the Cauchy problem of the two-dimensional density-dependent magnetohydrodynamic equations with vacuum, (arXiv:1506.02156 [math.AP])

  49. Oswald, P., Pieranski, P.: Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. Taylor Francis/CRC Press, Boca Raton (2005)

    Google Scholar 

  50. Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier–Stokes equations with bounded density. Commun. Partial Differ. Equ. 38, 1208–1234 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Sonnet, A.M., Virga, E.G.: Dissipative Ordered Fluids. Springer, Boston (2012). ISBN 978-0-387-87814-0

    MATH  Google Scholar 

  52. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Berlin-Heidelberg-New York (1988)

    MATH  Google Scholar 

  53. Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Rational Mech. Anal. 200, 1–19 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Wu, H.W.: Strong solutions to the incompressible magnetohydrodynamic equations with vacuum. Comput. Math. Appl. 61, 2742–2753 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Yu, H., Zhang, P.: Global regularity to the 3D incompressible nematic liquid crystal flows with vacuum. Nonlinear Anal. 174, 209–222 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Zhai, X., Li, Y., Yan, W.: Global solution to the 3-D density-dependent incompressible flow of liquid crystals. Nonlinear Anal. 156, 249–274 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, J.: Global well-posedness for the incompressible Navier–Stokes equations with density-dependent viscosity coefficient. J. Differ. Equ. 259, 1722–1742 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Zhong, X.: Global strong solution for 3D viscous incompressible heat conducting Navier–Stokes flows with non-negative density. J. Differ. Equ. 263, 4978–4996 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Zhong, X.: Global strong solutions for nonhomogeneous heat conducting Navier–Stokes equations. Math. Methods Appl. Sci. 41, 127–139 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Zhong, X.: Global strong solution for viscous incompressible heat conducting Navier–Stokes flows with density-dependent viscosity. Anal. Appl. (Singap.) 16, 623–647 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Zhou, Y., Fan, J.: A regularity criterion for the nematic liquid crystal flows. J. Inequal. Appl. Art. ID 589697, p. 9 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxuan Zhu.

Additional information

Communicated by Yong Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhu, M. Strong Solutions to the Density-Dependent Incompressible Nematic Liquid Crystal Flows with Heat Effect . Bull. Malays. Math. Sci. Soc. 44, 1579–1611 (2021). https://doi.org/10.1007/s40840-020-01026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01026-2

Keywords

Mathematics Subject Classification

Navigation