Skip to main content
Log in

Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the initial and boundary value problem for a system of partial differential equations describing the motion of a fluid–solid mixture under the assumption of full saturation. The ability of the fluid phase to flow within the solid skeleton is described by the permeability tensor, which is assumed here to be a multiple of the identity and to depend nonlinearly on the volumetric solid strain. In particular, we study the problem of the existence of weak solutions in bounded domains, accounting for non-zero volumetric and boundary forcing terms. We investigate the influence of viscoelasticity on the solution functional setting and on the regularity requirements for the forcing terms. The theoretical analysis shows that different time regularity requirements are needed for the volumetric source of linear momentum and the boundary source of traction depending on whether or not viscoelasticity is present. The theoretical results are further investigated via numerical simulations based on a novel dual mixed hybridized finite element discretization. When the data are sufficiently regular, the simulations show that the solutions satisfy the energy estimates predicted by the theoretical analysis. Interestingly, the simulations also show that, in the purely elastic case, the Darcy velocity and the related fluid energy might become unbounded if indeed the data do not enjoy the time regularity required by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo R.P., Sean McElwain, Sean McElwain: A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation. SIAM J. Appl. Math. 65(4), 1261–1284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold D.N., Brezzi F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. Modeling and Numer. Anal. 19(1), 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York, 1991

  5. Canic S., Tambaca J., Guidoboni G., Mikelic A., Hartley C.J., Rosenstrauch D.: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao Y., Chen S., Meir A.J.: Analysis and numerical approximations of equations of nonlinear poroelasticity. DCDS-B 18, 1253–1273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao Y., Chen S., Meir A.J.: Steady flow in a deformable porous medium. Math. Meth. Appl. Sci. 37, 1029–1041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Chen, S. Meir, A.J.: Quasilinear poroelasticity: analysis and hybrid finite element approximation. Num. Meth. PDE. (2014). doi:10.1002/num.21940

  9. Causin P., Guidoboni G., Harris A., Prada D., Sacco R., Terragni S.: A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Math. Biosci. 257, 33–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Causin P., Sacco R.:: A discontinuous Petrov–Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal. 43(1), 280–302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chapelle D., Sainte-Marie J., Gerbeau J.-F., Vignon-Clementel I.: Aporoelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput. Mech. 46(1), 91–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: Three-Dimensional Elasticity, vol. 1. Elsevier, New York, 1988

  13. Cockburn B., Dong B., Guzmán J., Restelli M., Sacco R.: A Hybridizable discontinuous galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn B., Gopalakrishnan J.: A characterization of hybridized mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42(1), 283–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn B., Gopalakrishnan J., Lazarov R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cowin S.C.: Bone poroelasticity. J. Biomech. 32(3), 217–238 (1999)

    Article  MathSciNet  Google Scholar 

  17. Detournay, E., Cheng, A.H.-D.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, pp. 113–171. Pergamon Press, 1993

  18. Evans, L.: Partial Differential Equations, vol. 19, 2nd edn. AMS, Graduate Studies in Mathematics, 2010

  19. Farhloul M.: A mixed finite element method for the Stokes equations. Numer. Methods Partial Differ. Equ. 10(5), 591–608 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farhloul M., Fortin M.: A New mixed finite element for the stokes and elasticity problems. SIAM J. Numer. Anal. 30(4), 971–990 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frijns, A.J.H.: A Four-Component Mixture Theory Applied to Cartilaginous Tissues: Numerical Modelling and Experiments. Thesis (Dr.ir.)–Technische Universiteit Eindhoven (The Netherlands), 2000

  22. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York, 1993

  23. Gaspar F.J., Lisbona F.J., Vabishchevich P.N.: Finite difference schemes for poro-elastic problems. Comput. Methods Appl. Math. 2, 132–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gaspar F.J., Lisbona F.J., Vabishchevich P.N.: A finite difference analysis of Biot’s consolidation model. Appl. Numer. Math. 44, 487–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Herrmann L.R.: Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3(10), 1896–1900 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hsu C.T., Cheng P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33(8), 1587–1597 (1990)

    Article  MATH  Google Scholar 

  27. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Upper Saddle River, 1987

  28. Huyghe J.M., Arts T., van Campen D.H., Reneman R.S.: Porous medium finite element model of the beating left ventricle. Am. J. Physiol. 262, 1256–1267 (1992)

    Google Scholar 

  29. Kesavan, S.: Topics in Functional Analysis and Applications. New Age International Publishers, 1989

  30. Klisch S.M.: Internally constrained mixtures of elastic continua. Math. Mech. Solids 4, 481–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Korsawe J., Starke G., Wang W., Kolditz O.: Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches. Comput. Methods Appl. Mech. Eng. 195(9–12), 1096–1115 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Lai W.M., Hou J.S., Mow V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. ASME J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  33. Langer R.: Perspectives and challenges in tissue engineering and regenerative medicine. Adv. Mater. 21(32–33), 3235–3236 (2009)

    Article  Google Scholar 

  34. Lemon G., King J.R., Byrne H.M., Jensen O.E., Shakesheff K.M.: Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J. Math. Biol. 52, 571–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York, 1998

  36. Mader T.H., Gibson C.R., Pass A.F., Kramer L.A., Lee A.G., Fogarty J., Tarver W.J., Dervay J.P., Hamilton D.R., Sargsyan A.E., Phillips J.L., Tran D., Lipsky W., Choi J., Stern C., Kuyumjian R., Polk J.D.: Optic Disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Opthalmology 118(10), 2058–2069 (2011)

    Article  Google Scholar 

  37. Mazzucato A.L., Nistor V.: Well-posedness and regularity for the elasticity equations with mixed boundary conditions on polyhedral domains and domains with cracks. Arch. Ration. Mech. Anal. 195, 25–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. ASME J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  39. Nicaise S.: About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation i: regularity of solutions.. Annali della Scuola Normale Superiore di Pisa Classe di Scienze 4e série 19, 327–361 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Owczarek S.: A Galerkin method for Biot consolidation model. Math. Mech. Solids 15, 42–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Phillips P.J., Wheeler M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Phillips, P.J., Wheeler, M.F.: Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13(1), 5–12 2009

  43. Preziosi L., Tosin A.: Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58, 625–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics, vol. 37. Springer, Berlin, 2007

  45. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations Springer, New York, 1994

  46. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods, I. Springer, Berlin 1977

  47. Rempel S., Schulze B.-W.: Mixed boundary value problems for Lamé’s system in three dimensions. Math. Nachr. 119, 265–290 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  48. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods, Part I, vol. 2. North-Holland, Amsterdam, 1991

  49. Savaré, G.: Regularity and perturbation results for mixed second order elliptic problems. Commun. PDE 22 (1997)

  50. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, vol. 49. AMS, Mathematical Surveys and Monographs, 1996

  51. Showalter R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Showalter R.E.: Diffusion in poro-platic media. Math. Methods Appl. Sci. 27, 2131–2151 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Stewart, D.E.: Dynamics with Inequalities: Impacts and Hard Constraints. SIAM, Philadelphia, 2011

  54. Su N., Showalter R.E.: Partially saturated flow in a poroelastic medium. DCDS-B 1, 403–420 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zenisek A.: The existence and uniqueness theorem in Biot’s consolidation theory. Appl. Math. 29, 194–211 (1984)

    MathSciNet  MATH  Google Scholar 

  56. Zienkiewicz, O.C., Taylor R.L.: The Finite Element Method, 5th edn. Wiley-VCH, Weinheim, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Guidoboni.

Additional information

Communicated by I. Fonseca

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bociu, L., Guidoboni, G., Sacco, R. et al. Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models. Arch Rational Mech Anal 222, 1445–1519 (2016). https://doi.org/10.1007/s00205-016-1024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1024-9

Navigation