Skip to main content
Log in

The Gross–Pitaevskii Hierarchy on General Rectangular Tori

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this work, we study the Gross–Pitaevskii hierarchy on general—rational and irrational—rectangular tori of dimensions two and three. This is a system of infinitely many linear partial differential equations which arises in the rigorous derivation of the nonlinear Schrödinger equation. We prove a conditional uniqueness result for the hierarchy. In two dimensions, this result allows us to obtain a rigorous derivation of the defocusing cubic nonlinear Schrödinger equation from the dynamics of many-body quantum systems. On irrational tori, this question was posed as an open problem in the previous work of Kirkpatrick, Schlein, and Staffilani.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari Z., Nier F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. H. Poincaré 9, 1503–1574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari Z., Nier F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. 95, 585–626 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observations of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  4. Bardos C., Erdős L., Golse F., Mauser N., Yau H.-T.: Derivation of the Schrödinger–Poisson equation from the quantum N-body problem. C.R. Math. Acad. Sci. Paris 334(6), 515–520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos C., Golse F., Mauser N.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7, 275–293 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Beckner, W.: Convolution estimates and the Gross–Pitaevskii hierarchy (2011) (preprint). arXiv:1111.3857

  7. Beckner W.: Multilinear embedding estimates for the fractional Laplacian. Math. Res. Lett. 19(1), 175–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bose S.N.: Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik 26, 178 (1924)

    Article  ADS  MATH  Google Scholar 

  9. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J.: On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori. Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies, Vol. 163. Princeton University Press, Princeton, pp. 1–20, 2007

  11. Bourgain J., Demeter C.: The proof of the l 2 decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgain, J., Demeter, C., l p decouplings for hypersurfaces with nonzero Gaussian curvature (2014) (preprint). arXiv:1407.0291

  13. Bourgain, J., Demeter, C.: Decouplings for curves and hypersurfaces with nonzero Gaussian curvature (2014) (preprint). arXiv:1409.1634

  14. Burq N., Gérard P., Tzvetkov N.: Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. Math. 159(1), 187–223 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Catoire F., Wang W.-M.: Bounds on Sobolev norms for the defocusing nonlinear Schrödinger equation on general flat tori. Commun. Pure Appl. Anal. 9(2), 483–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen T., Hainzl C., Pavlović N., Seiringer R.: Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti. Commun. Pure Appl. Math. 68(10), 1845–1884 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen T., Hainzl C., Pavlović N., Seiringer R.: On the well-posedness and scattering for the Gross–Pitaevskii hierarchy via quantum de Finetti. Lett. Math. Phys. 104(7), 871–891 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chen T., Pavlović N.: On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hiearchies. Discret. Contin. Dyn. Syst. 27(2), 715–739 (2010)

    Article  MATH  Google Scholar 

  19. Chen T., Pavlović N.: Recent results on the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Math. Model. Nat. Phenom. 5(4), 54–72 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen T., Pavlović N.: The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Funct. Anal. 260(4), 959–997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen T., Pavlović N.: A new proof of existence of solutions for focusing and defocusing Gross–Pitaevskii hierarchies. Proc. Amer. Math. Soc. 141(1), 279–293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen T., Pavlović N.: Higher order energy conservation and global well-posedness for Gross–Pitaevskii hierarchies. Commun. Partial Differ. Equ. 39(9), 1597–1634 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen T., Pavlović N.: Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from many-body dynamics in d =  2, 3 based on spacetime norms. Ann. Henri Poincaré 15(3), 543–588 (2014)

    Article  ADS  MATH  Google Scholar 

  24. Chen T., Pavlović N., Tzirakis N.: Energy conservation and blowup of solutions for focusing and defocusing Gross–Pitaevskii hierarchies. Ann. Inst. H. Poincaré Anal. Non Linéaire. 27(5), 1271–1290 (2010)

    Article  ADS  MATH  Google Scholar 

  25. Chen, T., Pavlović, N., Tzirakis, N., Multilinear Morawetz identities for the Gross–Pitaevskii hierarchy. Recent Advances in Harmonic Analysis and Partial Differential Equations. Contemporary Mathematics, Vol. 581. American Mathematical Society, Providence, pp. 39–62, 2012

  26. Chen T., Taliaferro K.: Positive semidefiniteness and global well-posedness of solutions to the Gross–Pitaevskii hierarchy. Commun. Partial Differ. Equ. 39(9), 1658–1693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, X.: Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps. J. Math. Pures Appl. (9) 98(4), 450–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, X., Holmer, J.: On the Klainerman–Machedon conjecture of the quantum BBGKY hierarchy with self-interaction. J. Eur. Math. Soc. (JEMS) (2013) (to appear, preprint). arXiv:1303.5385

  29. Chen, X., Holmer, J.: Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy (2014) (preprint). arXiv:1409.1425

  30. Chen X., Smith P.: On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy. Anal. PDE 7(7), 1683–1712 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969–3973 (1995)

    Article  ADS  Google Scholar 

  32. Demirbas, S.: Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms (2013) (preprint). arXiv:1307.0051

  33. Einstein, A.: Quantentheorie des einatomigen idealen Gases, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1: 3. (1925)

  34. Elgart A., Erdős L., Schlein B., Yau H.-T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179, 265–283 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98(4), 040404 (2007)

    Article  ADS  Google Scholar 

  38. Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Amer. Math. Soc. 22(4), 1099–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)

  40. Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fröhlich J., Knowles A., Schwarz S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Fröhlich J., Tsai T.-P., Yau H.-T.: On the point-particle (Newtonian) limit of the non-linear Hartree equation. Commun. Math. Phys. 225(2), 223–274 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ginibre J., Velo G.: The classical field limit of scattering theory for nonrelativistic many-boson systems I. Commun. Math. Phys. 66(1), 37–76 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Ginibre J., Velo G.: The classical field limit of scattering theory for nonrelativistic many-boson systems II. Commun. Math. Phys. 68(1), 45–68 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Gressman P., Sohinger V., Staffilani G.: On the uniqueness of solutions to the 3D periodic Gross–Pitaevskii hierarchy. J. Funct. Anal. 266(7), 4705–4764 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gross E.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  47. Guo Z., Oh T., Wang Y.: Strichartz estimates for Schrödinger equations on irrational tori. Proc. Lond. Math. Soc. 109(4), 975–1013 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Herr S.: The quintic nonlinear Schrödinger equation on three-dimensional Zoll manifolds. Amer. J. Math. 135(5), 1271–1290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hardy, G.H., Wright, E.M., An Introduction to the Theory of Numbers, 3rd edn. Clarendon Press, Oxford, 1954

  50. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  51. Herr S., Tataru D., Tzvetkov N.: Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in \({{H^{1}}({\mathbb{T}^{3}})}\). Duke Math. J. 159(2), 329–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hong Y., Taliaferro K., Xie Z.: Unconditional uniqueness of the cubic Gross–Pitaevskii hierarchy with low regularity. SIAM J. Math. Anal. 47(5), 3314–3341 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hong, Y., Taliaferro, K., Xie, Z.: Uniqueness of solutions to the 3D quintic Gross–Pitaevskii hierarchy (2014) (preprint). arXiv:1410.6961

  54. Killip, R., Vişan, M.: Scale invariant Strichartz estimates on tori and applications (2014) (preprint). arXiv:1409.3603

  55. Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems: the periodic case. Amer. J. Math. 133(1), 91–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Klainerman S., Machedon M.: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Commun. Math. Phys. 279(1), 169–185 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Knowles A., Limiting dynamics in large quantum systems, Ph.D. Thesis, ETH, June 2009

  58. Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–139 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Lewin M., Nam P.T., Rougerie N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lewin M., Nam P.T., Rougerie N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. Éc. Polytech. Math. 2, 65–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lewin M., Sabin J.: The Hartree equation for infinitely many particles. I. Well-posedness theory. Commun. Math. Phys. 334(1), 117–170 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Lewin M., Sabin J.: The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D. Anal. PDE 7(6), 1339–1363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lieb, E., Seiringer, R., Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409-1-4 (2002)

  64. Lieb, E., Seiringer, R., Solovej, J.P.: The Quantum-Mechanical Many-Body Problems: The Bose Gas, Perspectives in Analysis. Mathematical Physics Studies, Vol. 27. Springer, Berlin, 97–183, 2005

  65. Lieb, E., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, Vol. 34. Birkhauser, Basel, 2005

  66. Lieb E., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  67. Lieb E., Seiringer R., Yngvason J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Dedicated to Joel L. Lebowitz. Commun. Math. Phys. 224(1), 17–31 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Pitaevskii L.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  69. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Schlein, B.: Derivation of effective evolution equations from microscopic quantum dynamics. Chapter in Evolution Equations. Clay Mathematics Proceedings, Vol. 17 (Eds. D. Ellwood, I. Rodnianski, G. Staffilani, J. Wunsch), 2013

  71. Sohinger, V.: Local existence of solutions to Randomized Gross–Pitaevskii hierarchies. Trans. Am. Math Soc. (2014) (to appear, preprint). arXiv.1401.0326. Available electronically at http://dx.doi.org/10.1016/j.anihpc.2014.09.005

  72. Sohinger, V.: A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on \({{\mathbb{T}^{3}}}\) from the dynamics of many-body quantum systems. Ann. Inst. H. Poincaré (C) Analyse Non Linéaire (2014) (to appear, preprint). arXiv.1405.3003. Available electronically at http://dx.doi.org/10.1016/j.anihpc.2014.09.005

  73. Sohinger V., Staffilani G.: Randomization and the Gross–Pitaevskii hierarchy. Arch. Rat. Mech. Anal. 218(1), 417–485 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. Spohn H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  75. Strunk N.: Strichartz estimates for Schrödinger equations on irrational tori in two and three dimensions. J. Evol. Equ. 14(4-5), 829–839 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Herr.

Additional information

Communicated by G. Friesecke

This work has been partially supported by the German Research Foundation, CRC 701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herr, S., Sohinger, V. The Gross–Pitaevskii Hierarchy on General Rectangular Tori. Arch Rational Mech Anal 220, 1119–1158 (2016). https://doi.org/10.1007/s00205-015-0950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0950-2

Keywords

Navigation