Skip to main content
Log in

Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let \({\Omega \subset \mathbb{R}^N}\) be an open bounded domain and \({m \in \mathbb{N}}\). Given \({k_1,\ldots,k_m \in \mathbb{N}}\), we consider a wide class of optimal partition problems involving Dirichlet eigenvalues of elliptic operators, of the following form

$${\rm inf}\left\{F({\lambda_{k_{1}}}(\omega_1),\ldots,\lambda_{k_m}(\omega_m)):\ (\omega_1,\ldots, \omega_m) \in \mathcal{P}_m(\Omega)\right\},$$

where \({\lambda_{k_i}(\omega_i)}\) denotes the k i -th eigenvalue of \({(-\Delta,H^{1}_{0}(\omega_i))}\) counting multiplicities, and \({\mathcal{P}_m(\Omega)}\) is the set of all open partitions of \({\Omega}\), namely

$$\mathcal{P}_m(\Omega)=\left\{(\omega_1, \ldots, \omega_m):\omega_i \subset \Omega \, {\rm open},\ \omega_{i} \cap\omega_j=\emptyset\,\forall i \neq j \right\}.$$

While the existence of a quasi-open optimal partition \({(\omega_1,\ldots, \omega_m)}\) follows from a general result by Bucur, Buttazzo and Henrot [Adv Math Sci Appl 8(2):571–579, 1998], the aim of this paper is to associate with such minimal partitions and their eigenfunctions some suitable extremality conditions and to exploit them, proving as well the Lipschitz continuity of some eigenfunctions, and the regularity of the partition in the sense that the free boundary \({\cup_{i=1}^m \partial \omega_{i} \cap \Omega}\) is, up to a residual set, locally a \({C^{1,\alpha}}\) hypersurface. This last result extends the ones in the paper by Caffarelli and Lin [J Sci Comput 31(1–2):5–18, 2007] to the case of higher eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Band R., Berkolaiko G., Raz H., Smilansky U.: The number of nodal domains on quantum graphs as a stability index of graph partitions. Commun. Math. Phys. 311(3), 815–838 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Berestycki H., Terracini S., Wang K., Wei J.-C.: On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243, 102–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkolaiko G., Kuchment P., Smilansky U.: Critical partitions and nodal deficiency of billiard eigenfunctions. Geom. Funct. Anal. 22(6), 1517–1540 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnaillie-Noël V., Helffer B., Vial G.: Numerical simulations for nodal domains and spectral minimal partitions. ESAIM Control Optim. Calc. Var. 16(1), 221–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourdin, B., Bucur, D., Oudet, É.: Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31(6), 4100–4114 (2009/2010)

  6. Bucur D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 65. Birkhäuser, Boston Inc., Boston, 2005

  7. Bucur D., Buttazzo G., Henrot A.: Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8(2), 571–579 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Bucur D., Mazzoleni D., Pratelli A., Velichkov B.: Lipschitz Regularity of the Eigenfunctions on Optimal Domains. Arch. Ration. Mech. Anal. 216(1), 117–151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buttazzo G., Dal Maso D.: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23(1), 17–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buttazzo G., Timofte C.: On the relaxation of some optimal partition problems. Adv. Math. Sci. Appl. 12(2), 509–520 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Caffarelli L.A., Karakhanyan A.L., Lin F.-H.: The geometry of solutions to a segregation problem for nondivergence systems. J. Fixed Point Theory Appl. 5(2), 319–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli L.A., Lin F.-H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007)

    Article  MathSciNet  Google Scholar 

  13. Caffarelli L.A., Lin F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli L.A., Lin F.-H.: Analysis on the junctions of domain walls. Discrete Contin. Dyn. Syst. 28(3), 915–929 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang S.-M., Lin C.-S., Lin T.-C., Lin W.-W.: Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Physica D 196(3–4), 341–361 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Conti M., Terracini S., Verzini G.: Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(6), 871–888 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Conti M., Terracini S., Verzini G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Conti M., Terracini S., Verzini G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Conti M., Terracini S., Verzini G.: On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae. Calc. Var. Partial Differ. Equ. 22(1), 45–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dancer E.N., Wang K., Zhang Z.: The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 262(3), 1087–1131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, 2nd edn. Springer, Berlin, 1983

  23. Helffer B.: On spectral minimal partitions: a survey. Milan J. Math. 78(2), 575–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helffer B., Hoffmann-Ostenhof T., Terracini S.: Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 101–138 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Helffer B., Hoffmann-Ostenhof T., Terracini S.: Nodal minimal partitions in dimension 3. Discrete Contin. Dyn. Syst. 28(2), 617–635 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: On spectral minimal partitions: the case of the sphere. In: Around the Research of Vladimir Maz’ya. III, International Mathematical Series (New York), vol. 13, pp. 153–178. Springer, New York, 2010

  27. Hong G., Wang L.: A geometric approach to the topological disk theorem of Reifenberg. Pac. J. Math. 233(2), 321–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jerison D.S., Kenig C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kenig, C.E.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics, vol. 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1994

  30. Kenig C.E., Toro T.: Harmonic measure on locally flat domains. Duke Math. J. 87(3), 509–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lewis, J.: Applications of boundary Harnack inequalities for p harmonic functions and related topics. In: Regularity Estimates for Nonlinear Elliptic and Parabolic Problems, Lecture Notes in Mathematics, vol. 2045, pp. 1–72. Springer, Heidelberg, 2012

  32. Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Polácik P.: Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains. J. Funct. Anal. 262(10), 4458–4474 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218(2), 647–697 (2015)

  35. Šverák V.: On optimal shape design. J. Math. Pures Appl. (9) 72(6), 537–551 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Tavares, Hugo.: Nonlinear elliptic systems with a variational structure: existence, asymptotics and other qualitative properties. Ph.D. thesis, University of Lisbon (2010). http://repositorio.ul.pt/bitstream/10451/2246/1/ulsd059322_td_Hugo_Tavares

  37. Tavares, H., Terracini, S.: A stratification result for a class of optimal partition problem (in preparation)

  38. Tavares H., Terracini S.: Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. Partial Differ. Equ. 45(3–4), 273–317 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tavares H., Terracini S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(2), 279–300 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Tavares, H., Zilio, A.: Regularity of solutions to spectral optimal partition problems (in preparation)

  41. Willem, M.: Principes d’analyse fonctionnelle. Nouvelle Bibliothèque Mathématique [New Mathematics Library], vol. 9. Cassini, Paris, 2007

  42. Ziemer, William P.: Weakly Differentiable Functions, Graduate Texts in Mathematics, vol. 120. Springer, New York, 1989 (Sobolev spaces and functions of bounded variation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Terracini.

Additional information

Communicated by G. Dal Maso

Miguel Ramos: Deceased on January 3rd 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, M., Tavares, H. & Terracini, S. Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues. Arch Rational Mech Anal 220, 363–443 (2016). https://doi.org/10.1007/s00205-015-0934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0934-2

Keywords

Navigation