Skip to main content
Log in

Existence and Non-linear Stability of Rotating Star Solutions of the Compressible Euler–Poisson Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler–Poisson (Euler–Poisson) equations in three spatial dimensions with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions considered in the classical Auchmuty–Beals paper. We prove the non-linear dynamical stability of these solutions with perturbations having the same total mass and symmetry as the rotating star solution. We also prove finite time stability of \(W^{1, \infty}(\mathbb {R}^{3})\) solutions where the perturbations are entropy-weak solutions of the Euler–Poisson equations. Finally, we give a uniform (in time) a priori estimate for entropy-weak solutions of the Euler–Poisson equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L. (2004) Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2): 227–260

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Auchmuty G., Beals R. (1971) Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal. 43: 255–271

    Article  MathSciNet  MATH  Google Scholar 

  3. Auchmuty G. (1991) The global branching of rotating stars. Arch. Rat. Mech. Anal. 114: 179–194

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli L., Friedman A. (1980) The shape of axisymmetric rotating fluid. J. Funct. Anal. 694: 109–142

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekhar S. (1939) Introduction to the Stellar Structure. University of Chicago Press, Chicago

    MATH  Google Scholar 

  6. Chanillo S., Li Y.Y. (1994) On diameters of uniformly rotating stars. Comm. Math. Phys. 166(2): 417–430

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen G.Q., Frid H. (1999) Large time behavior of entropy solutions of conservation laws. J. Differ. Equ. 152: 308–357

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen G.Q., Frid H. (1991) Divegence-measure fields and hyperbolic conservation laws. Arch. Rat. Mech. Anal. 147: 89–118

    Article  MATH  Google Scholar 

  9. Chen G.Q., Frid H. (2003) Extended divergence-measure fields and the Euler equations for gas dynamics. Comm. Math. Phys. 236(2): 251–280

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dafermos, C.M.: Entropy and the stability of classical solutions of hyperbolic system of conservation laws, Recent Mathematical Methods in Nonlinear Wave Propagation, Montecatini Terme, 1994, Lecture Notes in Math., vol. 1640, pp. 48–69. Springer, Berlin, 1996

  11. Deng Y., Liu T.P., Yang T., Yao Z. (2002) Solutions of Euler–Poisson equations for gaseous stars. Arch. Ration. Mech. Anal. 164(3): 261–285

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng Y., Xiang J., Yang T. (2003) Blowup phenomena of the Euler–Poisson equations for gaseous stars. J. of Math. Anal. and Appl. 286: 295–306

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Perna R.J., Lions P.L. (1989) Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98: 511–547

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Evans L., Gariepy R. (1992) Measure Theory and Fine Properties of Functions. CRC press, Boca Raton, FL

    MATH  Google Scholar 

  15. Friedman A., Turkington B. (1980) Asymptotic estimates for an axi-symmetric rotating fluid. J. Func. Anal. 37: 136–163

    Article  MATH  Google Scholar 

  16. Friedman A., Turkington B. (1981) Existence and dimensions of a rotating white dwarf. J. Differ. Equ. 42: 414–437

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Feireisl E. (2004) Dynamics of Viscous Compressible Fluids. Oxford University Press, New York

    MATH  Google Scholar 

  18. Jang, J.: Nonlinear instability in gravitational Euler–Poisson system for \({\gamma}=\frac{6}{5}\) . Arch. Ration. Mech. Anal., to appear

  19. Guo Y., Rein G. (1999) Stable steady states in stellar dynamics. Arch. Rat. Mech. Anal. 147: 225–243

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo Y., Rein G. (2002) Stable models of elliptical galaxies. Mon. Not. R. Astron. Soc. 344: 1296–1306

    Google Scholar 

  21. Gilbarg D., Trudinger N. (1983) Elliptic Partial Differentail Equations of Second Order, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Lax, P.: Shock waves and entropy. Contribution to Nonlinear Functional Analysis. (Ed. Zarantonello E. A.) Academic Press, New York, 603–634, 1971

  23. Lebovitz N.R.(1961) The virial tensor and its application to self-gravitating fluids. Astrophys. J. 134: 500–536

    Article  ADS  MathSciNet  Google Scholar 

  24. Lebovitz, N.R., Lifschitz, A.: Short-wavelength instabilities of Riemann ellipsoids, Philos. Trans. Roy. Soc. London Ser. A 354(1709), 927–950 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Li Y.Y. (1991) On uniformly rotating stars. Arch. Rat. Mech. Anal. 115(4): 367–393

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieb E.H., Loss M. (1997) Analysis, American Mathematical Society. Providence, Rhode Island

    Google Scholar 

  27. Lin S.S. (1997) Stability of gaseous stars in spherically symmetric motions. SIAM J. Math. Anal. 28(3): 539–569

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions P.L. (1984) The concentration-compactness principle in the calculus of variations. The locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1: 109–145

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Luo T., Smoller J. (2004) Rotating fluids with self-gravitation in bounded domains. Arch. Rat. Mech. Anal. 173(3): 345–377

    Article  MathSciNet  MATH  Google Scholar 

  30. McCann R. (2006) Stable rotating binary stars and fluid in a tube. Houston J. Math. 32(2): 603–631

    MathSciNet  MATH  Google Scholar 

  31. Makino T. (1992) Blowing up of the Euler–Poisson equation for the evolution of gaseous star, Transp. Theory Statist. Phys. 21: 615–624

    Article  MATH  Google Scholar 

  32. Reed M., Simon B. (1975) Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, NewYork

    MATH  Google Scholar 

  33. Rein G. (2001) Reduction and a concentration-compactness principle for energy-casimir functionals. SIAM J. Math. Anal.33(4): 896–912

    Article  MathSciNet  MATH  Google Scholar 

  34. Rein G. (2003) Non-linear stability of gaseous stars. Arch. Rat. Mech. Anal. 168(2): 115–130

    Article  MathSciNet  MATH  Google Scholar 

  35. Rudin W. (1976) Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, Auckland

    MATH  Google Scholar 

  36. Smoller J. (1994) Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  37. Tassoul J.L. (1978) Theory of Rotating Stars. Princeton University Press, Princeton

    Google Scholar 

  38. Wang D. (1999) Global solutions and stability for self-gravitating isentropic gases. J. Math. Anal. Appl. 229: 530–542

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Luo.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, T., Smoller, J. Existence and Non-linear Stability of Rotating Star Solutions of the Compressible Euler–Poisson Equations. Arch Rational Mech Anal 191, 447–496 (2009). https://doi.org/10.1007/s00205-007-0108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0108-y

Keywords

Navigation