Skip to main content
Log in

Asymptotics for Turbulent Flame Speeds of the Viscous G-Equation Enhanced by Cellular and Shear Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

G-equations are well-known front propagation models in turbulent combustion which describe the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton–Jacobi equations with convex (L 1 type) but non-coercive Hamiltonians. Viscous G-equations arise from either numerical approximations or regularizations by small diffusion. The nonlinear eigenvalue \({\bar H}\) from the cell problem of the viscous G-equation can be viewed as an approximation of the inviscid turbulent flame speed s T. An important problem in turbulent combustion theory is to study properties of s T, in particular how s T depends on the flow amplitude A. In this paper, we study the behavior of \({\bar H=\bar H(A,d)}\) as A → + ∞ at any fixed diffusion constant d > 0. For cellular flow, we show that

$$\bar H(A,d)\leqq C(d) \quad \text{for all}\ d >0 ,$$

where C(d) is a constant depending on d, but independent of A. Compared with \({\bar H(A,0)= O(A/\log A), A\gg 1}\), of the inviscid G-equation (d = 0), presence of diffusion dramatically slows down front propagation. For shear flow, \({\lim_{A\to +\infty}\frac{\bar H(A,d)}{A} = \lambda (d) >0 }\) where λ (d) is strictly decreasing in d, and has zero derivative at d = 0. The linear growth law is also valid for s T of the curvature dependent G-equation in shear flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel M., Cencini M., Vergni D., Vulpiani A.: Front speed enhancement in cellular flows. Chaos 12(2), 481–488 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Anantharaman N., Iturriaga R., Padilla P., Sanchez-Morgodo H.: Physical solutions of the Hamilton–Jacobi equation. Discrete Contin. Dyn. Syst. Ser. B 5(3), 513–528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audoly B., Berestycki H., Pomeau Y.: Reaction-diffusion en ećoulement rapide. C. R. Acad. Sci. Paris Série II 328, 255–262 (2000)

    ADS  MATH  Google Scholar 

  4. Cardaliaguet P., Nolen J., Souganidis P.E.: Homogenization and enhancement for the G-equation. Arch. Rational Mech. Anal. 199(2), 527–561 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Chertkov M., Yakhot V.: Propagation of a Huygens front through turbulent medium. Phys. Rev. Lett. 80(13), 2837–2840 (1998)

    Article  ADS  Google Scholar 

  6. Embid P., Majda A., Souganidis P.: Comparison of turbulent flame speeds from complete averaging and the G-equation. Phys. Fluids 7(8), 2052–2060 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Evans L.C.: Periodic homogenization of certain fully nonlinear partial differential equations. Proc. R. Soc. Edingb. Sect. A 120, 245–265 (1992)

    Article  MATH  Google Scholar 

  8. Fannjiang A., Papanicolaou G.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fedotov S.P.: G-equation, stochastic control theory and relativistic mechanics of a particle moving in a random field. Combust. Theory Model. 1, L1–L6 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ferziger J., Im H., Lund T.: Large eddy simulation of turbulent front propagation with dynamic subgrid models. Phys. Fluids 9(12), 3826–3833 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jauslin, H., Kreiss, H., Moser, J.: On the forced Burgers equation with periodic boundary conditions. In: Differential Equations: La Pietra 1996 (Florence), pp. 133–153. Proc. Sympos. Pure Math., Vol. 65. Amer. Math. Soc., Providence, 1999

  12. Lions, P.-L., Papanicolaou, G., Varadhan, S.: Homogenization of Hamilton–Jacobi equations. Unpublished preprint, circa 1986

  13. Liu Y.-Y., Xin J., Yu Y.: Periodic Homogenization of G-equations and the viscosity effects. Nonlinearity 23, 2351–2367 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Markstein G.: Nonsteady Flame Propagation. Pergamon Press, Oxford (1964)

    Google Scholar 

  15. Nolen, J., Novikov, A.: Homogenization of the G-equation with incompressible random drift. Preprint, 2010

  16. Nolen J., Xin J., Yu Y.: Bounds on front speeds for inviscid and viscous G-equations. Methods Appl. Anal. 16(4), 507–520 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Novikov A., Papanicolaou G., Ryzhik L.: Boundary layers for cellular flows at high Péclet numbers. Commun. Pure Appl. Math. 58(7), 867–922 (2005)

    Article  MATH  Google Scholar 

  18. Novikov A., Ryzhik L.: Boundary layers and KPP fronts in a cellular flow. Arch. Rational Mech. Anal. 184(1), 23–48 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. In: Applied Mathematical Science, Vol. 153. Springer, New York, 2003

  20. Peters N.: A spectral closure for premixed turbulent combustion in the flamelet regime. J. Fluid Mech. 242, 611–629 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Peters N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  22. Ronney, P.: Some open issues in premixed turbulent combustion. In: Buckmaster, J.D., Takeno, T. (eds.) Modeling in Combustion Science. Lecture Notes in Physics, Vol. 449. Springer-Verlag, Berlin, pp. 3–22, 1995

  23. Sivashinsky G.: Cascade-renormalization theory of turbulent flame speed. Combust. Sci. Tech. 62, 77–96 (1988)

    Article  Google Scholar 

  24. Sivashinsky, G.: Renormalization concept of turbulent flame speed. In: Lecture Notes in Physics, Vol. 351, 1989

  25. Williams F.: Turbulent combustion. In: Buckmaster, J. (eds) The Mathematics of Combustion., pp. 97–131. SIAM, Philadelphia (1985)

    Chapter  Google Scholar 

  26. Xin, J.: An introduction to fronts in random media. In: Surveys and Tutorials in the Applied Mathematical Sciences, Vol. 5. Springer, New York, 2009

  27. Xin J., Yu Y.: Periodic homogenization of inviscid G-equation for incompressible flows. Commun. Math Sci. 8(4), 1067–1078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yakhot V.: Propagation velocity of premixed turbulent flames. Combust. Sci. Tech. 60, 191–241 (1988)

    Article  MathSciNet  Google Scholar 

  29. Zlatos A.: Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows. Arch Rational Mech. Anal. 195, 441–453 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zlatos, A.: Reaction-Diffusion Front Speedup by Flows. Preprint, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Xin.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YY., Xin, J. & Yu, Y. Asymptotics for Turbulent Flame Speeds of the Viscous G-Equation Enhanced by Cellular and Shear Flows. Arch Rational Mech Anal 202, 461–492 (2011). https://doi.org/10.1007/s00205-011-0418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0418-y

Keywords

Navigation