Skip to main content
Log in

Curvature Effect in Shear Flow: Slowdown of Turbulent Flame Speeds with Markstein Number

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well-known in the combustion community that curvature effect in general slows down flame propagation speeds because it smooths out wrinkled flames. However, such a folklore has never been justified rigorously. In this paper, as the first theoretical result in this direction, we prove that the turbulent flame speed (an effective burning velocity) is decreasing with respect to the curvature diffusivity (Markstein number) for shear flows in the well-known G-equation model. Our proof involves several novel and rather sophisticated inequalities arising from the nonlinear structure of the equation. On a related fundamental issue, we solve the selection problem of weak solutions or find the “physical fluctuations” when the Markstein number goes to zero and solutions approach those of the inviscid G-equation model. The limiting solution is given by a closed form analytical formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N.: On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics. J. Eur. Math. Soc. (JEMS) 6(2), 207–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anantharaman N., Iturriaga R., Padilla P., Sánchez-Morgado H.: Physical solutions of the Hamilton– Jacobi equation. Discret. Contin. Dyn. Syst. Ser. B 5(3), 513–528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli L.A., Monneau R.: Counter-example in three dimension and homogenization of geometric motions in two dimension. Arch. Ration. Mech. Anal. 211(2), 503–574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardaliaguet P., Nolen J., Souganidis P.: Homogenization and enhancement for the G-equation in periodic media. Arch. Ration. Mech. Anal. 199(2), 527–561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaudhuri S., Wu F., Law C.K.: Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Phys. Rev. E 88, 033005 (2013)

    Article  ADS  Google Scholar 

  6. Evans L.C.: Towards a Quantum Analog of Weak KAM Theory. Commun. Math Phys. 244(2), 311–334 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Jauslin H., Kreiss H., Moser J.: On the forced Burgers equationwith periodic boundary conditions. Proc. Symp. Pure Math. 65, 133–153 (1999)

    Article  MATH  Google Scholar 

  8. Lions, P.L., Papanicolaou, G.C., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equation. unpublished preprint, circa 1986

  9. Lions P.L., Souganidis P.E.: Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. H. Poincaré Anal. Non Linaire 22(5), 667–677 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Liu Y., Xin J., Yu Y.: Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by cellular and shear flows. Arch. Ration. Mech. Anal. 199(2), 527–561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo S., Tran H., Yu Y.: Some inverse problems in periodic homogenization of Hamilton––Jacobi equations. Arch. Ration. Mech. Anal. 221(3), 1585–1617 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Markstein G.H.: Experimental and theoretical studies of flame front stability. J. Aero. Sci. 18, 199–209 (1951)

    Article  Google Scholar 

  13. Matalon M., Matkowsky B.J.: Flames as gasdynamic discontinuities. J. FluidMech. 124, 239–259 (1982)

    Article  ADS  MATH  Google Scholar 

  14. Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    MATH  Google Scholar 

  15. Pelce P., Clavin P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)

    Article  ADS  MATH  Google Scholar 

  16. Peters N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  17. Ronney P.: Some open issues in premixed turbulent combustion. In: Buckmaster, J.D., Takeno, T. (eds) Modeling in Combustion Science. Lecture Notes In Physics, vol. 449, pp. 3–22. Springer, Berlin (1995)

    Google Scholar 

  18. Sethian, J.: Curvature and the evolution of fronts. Commun. Math. Phys. 101(4), 487–499 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Xin J., Yu Y.: Periodic Homogenization of Inviscid G-equation for Incompressible Flows. Commun. Math Sci. 8(4), 1067–1078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Yu.

Additional information

Communicated by L. Caffarelli

The work was partly supported by NSF Grants DMS-1211179 (JX), DMS-0901460 (YY), and CAREER Award DMS-1151919 (YY).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, J., Xin, J. & Yu, Y. Curvature Effect in Shear Flow: Slowdown of Turbulent Flame Speeds with Markstein Number. Commun. Math. Phys. 359, 515–533 (2018). https://doi.org/10.1007/s00220-017-3060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3060-1

Navigation