Skip to main content
Log in

A Beale–Kato–Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove a blow-up criterion in terms of the upper bound of (ρ, ρ −1, θ) for a strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient of the proof is an a priori estimate for a quantity independently introduced in Haspot (Regularity of weak solutions of the compressible isentropic Navier–Stokes equation, arXiv:1001.1581, 2010) and Sun et al. (J Math Pure Appl 95:36–47, 2011), whose divergence can be viewed as the effective viscous flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace P.: On BMO regularity for linear elliptic systems. Ann. Mat. Pura Appl. 161, 231–269 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brézis H., Wainger S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MATH  Google Scholar 

  4. Cho Y., Kim H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Danchin R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differ. Equ. 26, 1183–1233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Danchin R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Rational Mech. Anal. 160, 1–39 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Desjardins B.: Regularity of weak solutions of the compressible isentropic Navier–Stokes equations. Comm. Partial Differ. Equ. 22, 977–1008 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan J., Jiang S.: Blow-up criteria for the Navier–Stokes equations of compressible fluids. J. Hyperbolic Differ. Equ. 5, 167–185 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fan J., Jiang S., Ou Y.: A blow-up criterion for the compressible viscous heat-conductive flows. Annales de l’Institut Henri Poncaré-Analyse non linéaire 27, 337–350 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Feireisl E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1705–1738 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feireisl E., Novotný A., Petzeltová H.: On the global existence of globally defined weak solutions to the Navier–Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Haspot, B.: Regularity of weak solutions of the compressible isentropic Navier–Stokes equation. arXiv:1001.1581 (2010)

  13. Hoff D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoff D.: Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids. Arch. Rational Mech. Anal. 139, 303–354 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Huang X., Xin Z.: A blow-up criterion for classical solutions to the compressible Navier–Stokes equations. Sci. China Math. 53, 671–686 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang S.: Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain. Comm. Math. Phys. 178, 339–374 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Jiang, L., Wang, C.: Global existence of weak solutions to the full compressible Navier–Stokes equations in an exterior domain. Preprint

  18. Jiang L., Wang Y.: On the blow up criterion to the 2-D compressible Navier–Stokes equations. Czechoslov. Math. J. 60, 195–209 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jiang S., Zhang P.: Global spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Comm. Math. Phys. 215, 559–581 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Jiang S., Zhang P.: Axisymmetric solutions of the 3-D Navier–Stokes equations for compressible isentropic flows. J. Math. Pure Appl. 82, 949–973 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lions P.L.: Mathematical Topics in Fluid Mechanics. Compressible Models, Vol 1. Clarendon Press, Oxford (1998)

    Google Scholar 

  22. Matsumura A., Nishida T.: The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids. Comm. Math. Phys. 89, 445–464 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Rozanova O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier–Stokes equations. J. Differ. Equ. 245, 1762–1774 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun Y., Wang C., Zhang Z.: A Beale–Kato–Majda Blow-up criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pure Appl. 95, 36–47 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sun Y., Zhang Z.: A blow-up criterion of strong solution for the 2-D compressible Navier–Stokes equations. Sci. China Math. 54, 105–116 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xin Z.: Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density. Comm. Pure Appl. Math. 51, 229–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Zhang.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wang, C. & Zhang, Z. A Beale–Kato–Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows. Arch Rational Mech Anal 201, 727–742 (2011). https://doi.org/10.1007/s00205-011-0407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0407-1

Keywords

Navigation