Skip to main content
Log in

Vanishing Viscosity with Short Wave–Long Wave Interactions for Systems of Conservation Laws

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Motivated by Benney’s general theory, we propose new models for short wave–long wave interactions when the long waves are described by nonlinear systems of conservation laws. We prove the strong convergence of the solutions of the vanishing viscosity and short wave–long wave interactions systems by using compactness results from compensated compactness theory and new energy estimates obtained for the coupled systems. We analyze several of the representative examples, such as scalar conservation laws, general symmetric systems, nonlinear elasticity and nonlinear electromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekiranov D., Ogawa T., Ponce G.: Weak solvability and well-posedness of a coupled Schrödinger–Korteweg De Vries equation for capillary-gravity wave interactions. Proc. Am. Math. Soc 125(10), 2907–2919 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bekiranov D., Ogawa T., Ponce G.: Interaction equations for short and long dispersive waves. J. Funct. Anal. 158, 357–388 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benney D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1977)

    MathSciNet  Google Scholar 

  4. Bressan, A.: Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy problem. Oxford Lecture Series in Mathematics and its Applications, vol. 20, xii+250 pp. Oxford University Press, Oxford, 2000

  5. Chen G.-Q., Kan P.-T.: Hyperbolic conservation laws with umbilic degeneracy. I.. Arch. Rational Mech. Anal. 130(3), 231–276 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chen G.-Q., Kan P.-T.: Hyperbolic conservation laws with umbilic degeneracy. Arch. Ration. Mech. Anal. 160(4), 325–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325. Springer, Berlin, 2000. xvi+443 pp.

  8. Dias J.P., Figueira M.: Existence of weak solutions for a quasilinear version of Benney equations. J. Hyperbolic Differ. Equ. 4, 555–563 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dias J.P., Figueira M., Oliveira F.: Existence of local strong solutions for a quasilinear Benney system. C. R. Acad. Sci. Paris, Ser. 1 344, 493–496 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Dias J.P., Frid H.: Radially symmetric weak solutions for a quasilinear wave equation in two space dimensions. J. Differ. Equ. 219(2), 306–322 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frid H., Santos M.: Non-strictly hyperbolic systems of conservation laws of the conjugate type. Comm. Partial Differ. Equ. 19(1–2), 27–59 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frid H., Santos M.: The Cauchy problem for the systems \({\partial_{t}z - \partial_{x}(\overline{z}^{\gamma})=0}\). J. Differ. Equ. 111(2), 340–359 (1994)

    Article  MATH  Google Scholar 

  13. Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences, vol. 152, xii+363 pp. Springer, New York, 2002

  14. Kato T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46, 113–129 (1987)

    MATH  Google Scholar 

  15. Keyfitz B., Kranzer H.: The Riemann problem for a class of hyperbolic conservation laws exhibiting a parabolic degeneracy. J. Differ. Equ. 47(1), 35–65 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. LeFloch, Ph.: Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves. In: Lectures in Mathematics ETH Zürich, x+294 pp. Birkhäuser, Basel, 2002

  17. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, xx+554 pp. (French) Dunod; Gauthier-Villars, Paris, 1969

  18. Lions, J.-L., Magenes, E.: Problèmes aux Limites Non Homogènes et Applications, vol. 1. Dunod, Paris, 1968

  19. Murat , Murat : Compacité par compensation. (French) . Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(3), 489–507 (1978)

    MATH  MathSciNet  Google Scholar 

  20. Rauch J.: Partial Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  21. Serre, D.: Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-boundary Value Problems. Translated from the 1996 French original by I. N. Sneddon, xii+269 pp. Cambridge University Press, Cambridge, 2000

  22. Serre D.: Les ondes planes en electromagnetisme non lineaire. Physica D 31, 227–251 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Serre, D., Shearer, J.: Convergence with physical viscosity for nonlinear elasticity. Unpublished preprint (1993) (available from D. Serre under request)

  24. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. IV, pp. 136–212. Res. Notes in Math., 39. Pitman, Boston, 1979

  25. Tsutsumi M., Hatano S.: Well-posedness of the Cauchy problem for the long wave-short wave resonance equations. Nonlinear Anal Theory Methods Appl 22(2), 155–171 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tsutsumi M., Hatano S.: Well-posedness of the Cauchy problem for Benney’s first equations of long wave short wave interactions. Funkcialaj Ekvacioj 37, 289–316 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermano Frid.

Additional information

Communicated by C. M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, J.P., Figueira, M. & Frid, H. Vanishing Viscosity with Short Wave–Long Wave Interactions for Systems of Conservation Laws. Arch Rational Mech Anal 196, 981–1010 (2010). https://doi.org/10.1007/s00205-009-0273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0273-2

Keywords

Navigation