Skip to main content
Log in

Hyperbolic conservation laws with umbilic degeneracy, I

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper a compactness framework for approximate solutions to nonlinear hyperbolic systems with umbilic degeneracy is established by combining techniques of compensated compactness with some classical methods, and by a detailed analysis of a highly singular equation of Euler-Poisson-Darboux type. Then this framework is successfully applied to prove the convergence of the viscosity method and to prove the existence of global entropy solutions for the Cauchy problem with large initial data for a canonical class of the systems with quadratic flux form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G.-Q.: Convergence of the Lax-Friedrichs schemes for isentropic gas dynamics III, Acta Math. Sci. 6, 75–120 (1986); 8, 243–276 (1988) (in Chinese).

    Google Scholar 

  2. Chen, G.-Q.: The compensated compactness method and the system of isentropic gas dynamics, Preprint MSRI-00527-91 Mathematical Science Research Institute, Berkeley (1990).

    Google Scholar 

  3. Chen, G.-Q.: The method of quasidecoupling for discontinuous solutions to conservation laws, Arch. Rational Mech. Anal. 121, 131–185 (1992).

    Google Scholar 

  4. Chen, G.-Q., & Kan, P.-T.: Hyperbolic conservation laws with umbilic degeneracy II, in preparation.

  5. Chueh, K. N., Conley, C. C., & Smoller, J.: Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26, 372–411 (1977).

    Google Scholar 

  6. Courant, R., & Hilbert, D.: Methods of Mathematical Physics, Vol. 2, Wiley-Interscience: New York (1948).

    Google Scholar 

  7. Craig, W.: Nonstrictly hyperbolic nonlinear systems, Math. Ann. 277, 213–232 (1987).

    Google Scholar 

  8. Dafermos, C. M.: Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18, 409–421 (1987).

    Google Scholar 

  9. Dafermos, C. M.: Solutions in L for a conservation law with memory, Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988), 117–128.

    Google Scholar 

  10. Darboux, G.: Leçons Sur La Théorie Générale des Surfaces, T. II, Paris (1914).

  11. De Giorgi, E.: Un esempio di non-unicità della soluzione del problema di Cauchy, Università di Roma, Rendiconti di Matematica, 14, 382–387 (1955).

    Google Scholar 

  12. Ding, X., Chen, G.-Q., & Luo, P.: Convergence of the Lax-Friedrichs schemes for isentropic gas dynamics I, II, Acta Math. Sci. 5, 483–540; 7, 460–480 (1987), 8, 61–94 (1988) (in Chinese).

  13. DiPerna, R.: Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82, 27–70 (1983).

    Google Scholar 

  14. DiPerna, R.: Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91, 1–30 (1983).

    Google Scholar 

  15. Evans, C.: Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS, Vol. 72, Providence, Rhode Island (1990).

  16. Euler, L.: Institutions Calculi Integralis, III, Petropoli (1790)

  17. Freistühler, H.: Rotational degenerancy of hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 113, 39–64 (1990).

    Google Scholar 

  18. Friedlands, S., Robbin, J. W., & Sylvester, J.: On the crossing rule, Comm. Pure Appl. Math. 37, 19–38 (1984).

    Google Scholar 

  19. Frid, H., & Santos, M. M.: Nonstrictly hyperbolic systems of conservation laws of the conjugate type, Comm. Partial Diff. Eqs. 19, 27–59 (1994).

    Google Scholar 

  20. Froissart, M.: Hyperbolic Equations and Waves, Battelle Seattle 1968 Recontres, Springer-Verlag, Berlin, Heidelberg (1970).

    Google Scholar 

  21. Glimm, J.: The continuous structure of discontinuities, Lecture Notes in Physics 344, 177–186 (1986).

    Google Scholar 

  22. Glimm, J.: Nonlinear waves: overview and problems, In: Multidimensional hyperbolic problems and computations, ed. J. Glimm & A. Majda, IMA Vol. 29, Springer-Verlag: New York (1991).

    Google Scholar 

  23. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18, 697–715 (1965).

    Google Scholar 

  24. Gevrey, M.: Sur la nature analytique des solutions des équations aux dérivavées partielles, Annales École norm, sup., 35, 129–189 (1917).

    Google Scholar 

  25. Godunov, S.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. 47, 271–360 (1959).

    Google Scholar 

  26. Holden, H.: On the Riemann problem for a prototype of a mixed type conservation law, Comm. Pure Appl. Math. 40, 229–264 (1987).

    Google Scholar 

  27. Hörmander, L.: The Analysis of Linear Partial Differential Operators II, Springer-Verlag Berlin Heidelberg (1983).

    Google Scholar 

  28. Hörmander, L.: Hyperbolic systems with double characteristics, Comm. Pure Appl. Math. 46, 261–301 (1993).

    Google Scholar 

  29. Isaacson, E., Marchesian, D., & Plohr, B.: Transitional shock waves, Contemporary Mathematics 100, 125–145 (1988).

    Google Scholar 

  30. Isaacson, E., Marchesin, D., Palmeira, C., & Plohr, B.: A global formalism for nonlinear waves in conservation laws, Comm. Math. Phys. 146, 505–552 (1992).

    Google Scholar 

  31. Isaacson, E., Marchesin, D., Plohr, B., & Temple, B.: The Riemann problem near a hyperbolic singularity: the classification of solutions of quadratic Riemann problem (I), SIAM J. Appl. Math. 48, 1–24 (1988).

    Google Scholar 

  32. Isaacson, E., & Temple, B.: The classification of solutions of quadratic Riemann problem (II), (III), SIAM J. Appl. Math. 48, 1287–1301, 1302–1318 (1988).

    Google Scholar 

  33. John, F.: Algebraic conditions for hyperbolicity of systems of partial differential equations, Comm. Pure Appl. Math. 31, 89–106, 787–793 (1978).

    Google Scholar 

  34. Kan, P.-T.: Convergence of the viscosity method for a system of nonstrictly hyperbolic conservation laws, Preprint (1992).

  35. Keyfitz, B. L.: Some elementary connections among nonstrictly hyperbolic conservation laws, Contemporary Mathematics, 60, 67–77 (1987).

    Google Scholar 

  36. Keyfitz, B. L., & Kranzer, H. C.: A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal. 72, 219–241 (1980).

    Google Scholar 

  37. Lax, P. D.: The multiplicity of eigenvalues, Bull. Amer. Math. Soc. 6, 213–214 (1982).

    Google Scholar 

  38. Lax, P. D.: Shock waves and entropy, in: Contributions to Nonlinear Functional Analysis, ed. E. A. Zarantonello, Academic Press, 603–634 (1971).

  39. Lax, P. D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7, 159–193 (1954).

    Google Scholar 

  40. Lax, P. D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia (1973).

    Google Scholar 

  41. Liu, T.-P., & Xin, Z.: Stability of viscous shock waves associated with a system of nonstrictly hyperbolic conservation laws, Comm. Pure Appl. Math. 45, 361–388 (1992).

    Google Scholar 

  42. Liu, T.-P., & Zumbrun, K.: Stability of an undercompressive shock, Preprint (1994).

  43. Liu, T.-P., & Wang, C. H.: On a hyperbolic system of conservation laws which is not strictly hyperbolic, J. Diff. Eqs. 57, 1–14 (1985).

    Google Scholar 

  44. Lu, Y.-G.: Convergence of the viscosity method for a nonstrictly hyperbolic system, Acta Mathematica Sinica, 12, 230–239 (1992).

    Google Scholar 

  45. Morawetz, C. S.: An alternative proof of DiPerna's theorem, Comm. Pure Appl. Math. 44, 1081–1090 (1991).

    Google Scholar 

  46. Murat, F.: L'injection du cone positif de H −1 dans W −1,q est compacte pour tout q<2, J. Math. Pures Appl. 60, 309–322 (1981).

    Google Scholar 

  47. Nohel, J., Rogers, R. C., & Tzavaras, A. E.: Hyperbolic conservation laws in viscoelasticity, Comm. Partial Diff. Eqns. 13, 97–127 (1988).

    Google Scholar 

  48. Ohya, Y.: On E. E. Levi's functions for hyperbolic equations with triple characteristics, Comm. Pure Appl. Math. 25, 257–263 (1972).

    Google Scholar 

  49. Rascle, M.: On the static and dynamic study of oscillations for some nonlinear hyperbolic systems of conservation laws, Anal. Non Linéaire 8, 333–350 (1991).

    Google Scholar 

  50. Rubino, B.: On the vanishing viscosity approximation to the Cauchy problem for a 2×2 system of conservation laws, Anal. Non Linéaire 10, 627–656 (1993).

    Google Scholar 

  51. Schaeffer, D., & Shearer, M.: The classification of 2×2 systems of nonstrictly hyperbolic conservation laws, with application to oil recovery, Comm. Pure Appl. Math. 40, 141–178 (1987).

    Google Scholar 

  52. Schaeffer, D., & Shearer, M.: Riemann problems for nonstrictly hyperbolic 2×2 systems of conservation laws, Trans. Amer. Math. Soc. 304, 267–306 (1987).

    Google Scholar 

  53. Shearer, M., Schaeffer, D., Marchesin, D., & Paes-Leme, P. J.: Solution of the Riemann problem for a prototype 2×2 system of nonstrictly hyperbolic conservation laws, Arch. Rational Mech. Anal. 97, 299–320 (1987).

    Google Scholar 

  54. Serre, D.: La compacité par compensation pour les systemes hyperboliques nonlinéaires de deux équations à une dimension d'éspace, J. Math. Pures Appl., 65, 423–468 (1986).

    Google Scholar 

  55. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1982.

    Google Scholar 

  56. Tartar, L.: Compensated compactness and applications to partial differential equations, In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, ed. R. J. Knops, pp. 136–212, Pitman Press, New York, 1979.

    Google Scholar 

  57. Temple, B.: Global existence of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3, 355–375 (1982).

    Google Scholar 

  58. Yang, G.-J.: The Euler-Poisson-Darboux Equations (in Chinese), Yuannan University Press, Yuannan, 1989.

    Google Scholar 

  59. Zumbrun, K., Plohr, B., & Marchesin, D.: Scattering behavior of transitional shock waves. Mat. Contemp. 3, 191–209 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GQ., Kan, P.T. Hyperbolic conservation laws with umbilic degeneracy, I. Arch. Rational Mech. Anal. 130, 231–276 (1995). https://doi.org/10.1007/BF00392028

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392028

Keywords

Navigation