Skip to main content
Log in

Euler–Poisson Systems as Action-Minimizing Paths in the Wasserstein Space

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper uses a variational approach to establish existence of solutions (σ t , v t ) for the 1-d Euler–Poisson system by minimizing an action. We assume that the initial and terminal points σ0, σ T are prescribed in \({\mathcal {P}_2(\mathbb {R})}\) , the set of Borel probability measures on the real line, of finite second-order moments. We show existence of a unique minimizer of the action when the time interval [0,T] satisfies T < π. These solutions conserve the Hamiltonian and they yield a path tσ t in \({\mathcal {P}_2(\mathbb {R})}\) . When σ t  = δy(t) is a Dirac mass, the Euler–Poisson system reduces to \({\ddot {y} + y=0}\) . The kinetic version of the Euler–Poisson, that is the Vlasov–Poisson system was studied in Ambrosio and Gangbo (Comm Pure Appl Math, to appear) as a Hamiltonian system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Gangbo W.: Hamiltonian ODE in the Wasserstein spaces of probability measures. Comm. Pure Appl. Math. 61(1), 18–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and the Wasserstein spaces of probability measures. Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005

  3. Ambrosio L., Santambrogio F.: Necessary optimality conditions for geodesics in weighted Wasserstein spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. (9) Mat. Natur. Rend. Lincei Mat. Appl. 18(1), 23–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolley F., Brenier Y., Loeper G.: Contractive metrics for scalar conservation laws. J. Hyperb. Diff. Equ. 2(1), 91–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchut F.: Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Ration. Mech. Anal. 157, 75–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenier Y.: Order preserving vibrating strings and applications to Electrodynamics and Magnetohydrodynamics. Methods Appl. Anal. 11(4), 515–532 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Benamou J.D., Brenier Y.: Weak existence for the semigeostrophic equations formulated as a coupled Monge–Ampère equations/transport problem. SIAM J. Appl. Anal. Math. 58(5), 1450–1461 (1998)

    Article  MATH  Google Scholar 

  8. Brenier Y., Grenier E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenier Y., Loeper G.: A geometric approximation to the Euler equations: The Vlasov–Monge–Ampère equation. Geom. Funct. Anal. 14(6), 1182–1218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo J.A., Di Francesco M., Lattanzio C.: Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(2), 277–292 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Cordier S., Degond P., Markowich P., Schmeiser C.: Travelling wave analysis of an isothermal Euler–Poisson model. Annales de la Faculté des Sciences de Toulouse V(4), 598–643 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Cullen M., Gangbo W., Pisante G.: Semigeostrophic equations discretized in reference and dual variables. Arch. Rat. Mech. Anal. 185(2), 341–363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rykov W.E.Y, Sinai Y.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177, 349–380 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoskins B.J.: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32, 233–242 (1975)

    Article  ADS  Google Scholar 

  16. Huang F., Wang Z.: Well posedness for pressureless flow. Comm. Math. Phys. 222, 117–146 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Markowich P., Ringhofer C., Schmeiser C.: Semiconductor Equations. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  18. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, 666–704 (1781)

  20. Peng Y.J.: Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler–Poisson system. Nonlinear Anal. 42, 1033–1054 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, New York, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gangbo.

Additional information

Communicated by L. Ambrosio

WG gratefully acknowledges the support provided by NSF grants DMS-02-00267, DMS-03-54729 and DMS-06-00791.

TN gratefully acknowledges the postdoctoral support provided by NSF grants DMS-03- 54729 and the School of Mathematics.

AT gratefully acknowledges the support provided by the School of Mathematics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangbo, W., Nguyen, T. & Tudorascu, A. Euler–Poisson Systems as Action-Minimizing Paths in the Wasserstein Space. Arch Rational Mech Anal 192, 419–452 (2009). https://doi.org/10.1007/s00205-008-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0148-y

Keywords

Navigation